Cargando…

Transgenic soybean expressing a thermostable phytase as substitution for feed additive phytase

Phytase is one of the most effective feed additives to increase the availability of phosphorus and minerals by catalyzing the hydrolysis of phytic acid. A modified appA gene (mappA) was transformed into soybean (Glycine max) under the control of a seed-specific promoter from common bean (Phaselous v...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yu, Zhu, Lixia, Lin, Chaoyang, Shen, Zhicheng, Xu, Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779883/
https://www.ncbi.nlm.nih.gov/pubmed/31591515
http://dx.doi.org/10.1038/s41598-019-51033-y
Descripción
Sumario:Phytase is one of the most effective feed additives to increase the availability of phosphorus and minerals by catalyzing the hydrolysis of phytic acid. A modified appA gene (mappA) was transformed into soybean (Glycine max) under the control of a seed-specific promoter from common bean (Phaselous vulgaris). The soybean recombinant phytase showed optimal activity at pH 4.5 and 70 °C. A slight increase in enzyme activity occurred when the recombinant enzyme was pre-incubated with n-hexane. In addition, the phytase activity from our transgenic soybean does not reduce even after 2 hours of extraction with n-hexane at 55~65 °C. In conclusion, the oil extraction process using n-hexane does not inactivate the phytase expressed in the mAppA transgenic soybean, and the meal derived from the transgenic soybean processing can be used as feed supplement to livestock.