Cargando…

Democratized image analytics by visual programming through integration of deep models and small-scale machine learning

Analysis of biomedical images requires computational expertize that are uncommon among biomedical scientists. Deep learning approaches for image analysis provide an opportunity to develop user-friendly tools for exploratory data analysis. Here, we use the visual programming toolbox Orange (http://or...

Descripción completa

Detalles Bibliográficos
Autores principales: Godec, Primož, Pančur, Matjaž, Ilenič, Nejc, Čopar, Andrej, Stražar, Martin, Erjavec, Aleš, Pretnar, Ajda, Demšar, Janez, Starič, Anže, Toplak, Marko, Žagar, Lan, Hartman, Jan, Wang, Hamilton, Bellazzi, Riccardo, Petrovič, Uroš, Garagna, Silvia, Zuccotti, Maurizio, Park, Dongsu, Shaulsky, Gad, Zupan, Blaž
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779910/
https://www.ncbi.nlm.nih.gov/pubmed/31591416
http://dx.doi.org/10.1038/s41467-019-12397-x
_version_ 1783457002320560128
author Godec, Primož
Pančur, Matjaž
Ilenič, Nejc
Čopar, Andrej
Stražar, Martin
Erjavec, Aleš
Pretnar, Ajda
Demšar, Janez
Starič, Anže
Toplak, Marko
Žagar, Lan
Hartman, Jan
Wang, Hamilton
Bellazzi, Riccardo
Petrovič, Uroš
Garagna, Silvia
Zuccotti, Maurizio
Park, Dongsu
Shaulsky, Gad
Zupan, Blaž
author_facet Godec, Primož
Pančur, Matjaž
Ilenič, Nejc
Čopar, Andrej
Stražar, Martin
Erjavec, Aleš
Pretnar, Ajda
Demšar, Janez
Starič, Anže
Toplak, Marko
Žagar, Lan
Hartman, Jan
Wang, Hamilton
Bellazzi, Riccardo
Petrovič, Uroš
Garagna, Silvia
Zuccotti, Maurizio
Park, Dongsu
Shaulsky, Gad
Zupan, Blaž
author_sort Godec, Primož
collection PubMed
description Analysis of biomedical images requires computational expertize that are uncommon among biomedical scientists. Deep learning approaches for image analysis provide an opportunity to develop user-friendly tools for exploratory data analysis. Here, we use the visual programming toolbox Orange (http://orange.biolab.si) to simplify image analysis by integrating deep-learning embedding, machine learning procedures, and data visualization. Orange supports the construction of data analysis workflows by assembling components for data preprocessing, visualization, and modeling. We equipped Orange with components that use pre-trained deep convolutional networks to profile images with vectors of features. These vectors are used in image clustering and classification in a framework that enables mining of image sets for both novel and experienced users. We demonstrate the utility of the tool in image analysis of progenitor cells in mouse bone healing, identification of developmental competence in mouse oocytes, subcellular protein localization in yeast, and developmental morphology of social amoebae.
format Online
Article
Text
id pubmed-6779910
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-67799102019-10-09 Democratized image analytics by visual programming through integration of deep models and small-scale machine learning Godec, Primož Pančur, Matjaž Ilenič, Nejc Čopar, Andrej Stražar, Martin Erjavec, Aleš Pretnar, Ajda Demšar, Janez Starič, Anže Toplak, Marko Žagar, Lan Hartman, Jan Wang, Hamilton Bellazzi, Riccardo Petrovič, Uroš Garagna, Silvia Zuccotti, Maurizio Park, Dongsu Shaulsky, Gad Zupan, Blaž Nat Commun Article Analysis of biomedical images requires computational expertize that are uncommon among biomedical scientists. Deep learning approaches for image analysis provide an opportunity to develop user-friendly tools for exploratory data analysis. Here, we use the visual programming toolbox Orange (http://orange.biolab.si) to simplify image analysis by integrating deep-learning embedding, machine learning procedures, and data visualization. Orange supports the construction of data analysis workflows by assembling components for data preprocessing, visualization, and modeling. We equipped Orange with components that use pre-trained deep convolutional networks to profile images with vectors of features. These vectors are used in image clustering and classification in a framework that enables mining of image sets for both novel and experienced users. We demonstrate the utility of the tool in image analysis of progenitor cells in mouse bone healing, identification of developmental competence in mouse oocytes, subcellular protein localization in yeast, and developmental morphology of social amoebae. Nature Publishing Group UK 2019-10-07 /pmc/articles/PMC6779910/ /pubmed/31591416 http://dx.doi.org/10.1038/s41467-019-12397-x Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Godec, Primož
Pančur, Matjaž
Ilenič, Nejc
Čopar, Andrej
Stražar, Martin
Erjavec, Aleš
Pretnar, Ajda
Demšar, Janez
Starič, Anže
Toplak, Marko
Žagar, Lan
Hartman, Jan
Wang, Hamilton
Bellazzi, Riccardo
Petrovič, Uroš
Garagna, Silvia
Zuccotti, Maurizio
Park, Dongsu
Shaulsky, Gad
Zupan, Blaž
Democratized image analytics by visual programming through integration of deep models and small-scale machine learning
title Democratized image analytics by visual programming through integration of deep models and small-scale machine learning
title_full Democratized image analytics by visual programming through integration of deep models and small-scale machine learning
title_fullStr Democratized image analytics by visual programming through integration of deep models and small-scale machine learning
title_full_unstemmed Democratized image analytics by visual programming through integration of deep models and small-scale machine learning
title_short Democratized image analytics by visual programming through integration of deep models and small-scale machine learning
title_sort democratized image analytics by visual programming through integration of deep models and small-scale machine learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779910/
https://www.ncbi.nlm.nih.gov/pubmed/31591416
http://dx.doi.org/10.1038/s41467-019-12397-x
work_keys_str_mv AT godecprimoz democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT pancurmatjaz democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT ilenicnejc democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT coparandrej democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT strazarmartin democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT erjavecales democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT pretnarajda democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT demsarjanez democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT staricanze democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT toplakmarko democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT zagarlan democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT hartmanjan democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT wanghamilton democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT bellazziriccardo democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT petrovicuros democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT garagnasilvia democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT zuccottimaurizio democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT parkdongsu democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT shaulskygad democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning
AT zupanblaz democratizedimageanalyticsbyvisualprogrammingthroughintegrationofdeepmodelsandsmallscalemachinelearning