Cargando…
Predicting Cardiac Arrest and Respiratory Failure Using Feasible Artificial Intelligence with Simple Trajectories of Patient Data
We introduce a Feasible Artificial Intelligence with Simple Trajectories for Predicting Adverse Catastrophic Events (FAST-PACE) solution for preparing immediate intervention in emergency situations. FAST-PACE utilizes a concise set of collected features to construct an artificial intelligence model...
Autores principales: | Kim, Jeongmin, Chae, Myunghun, Chang, Hyuk-Jae, Kim, Young-Ah, Park, Eunjeong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780058/ https://www.ncbi.nlm.nih.gov/pubmed/31470543 http://dx.doi.org/10.3390/jcm8091336 |
Ejemplares similares
-
Artificial intelligence algorithm for predicting cardiac arrest using electrocardiography
por: Kwon, Joon-myoung, et al.
Publicado: (2020) -
Artificial Intelligence and Echocardiography
por: Yoon, Yeonyee E., et al.
Publicado: (2021) -
Artificial Intelligence in Predicting Cardiac Arrest: Scoping Review
por: Alamgir, Asma, et al.
Publicado: (2021) -
Determining the cause of cardiac arrest: artificial intelligence at the bedside
por: Engrav, Samantha K, et al.
Publicado: (2023) -
Analyzing Patient Trajectories With Artificial Intelligence
por: Allam, Ahmed, et al.
Publicado: (2021)