Cargando…

WiPP: Workflow for Improved Peak Picking for Gas Chromatography-Mass Spectrometry (GC-MS) Data

Lack of reliable peak detection impedes automated analysis of large-scale gas chromatography-mass spectrometry (GC-MS) metabolomics datasets. Performance and outcome of individual peak-picking algorithms can differ widely depending on both algorithmic approach and parameters, as well as data acquisi...

Descripción completa

Detalles Bibliográficos
Autores principales: Borgsmüller, Nico, Gloaguen, Yoann, Opialla, Tobias, Blanc, Eric, Sicard, Emilie, Royer, Anne-Lise, Le Bizec, Bruno, Durand, Stéphanie, Migné, Carole, Pétéra, Mélanie, Pujos-Guillot, Estelle, Giacomoni, Franck, Guitton, Yann, Beule, Dieter, Kirwan, Jennifer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780109/
https://www.ncbi.nlm.nih.gov/pubmed/31438611
http://dx.doi.org/10.3390/metabo9090171
_version_ 1783457051027963904
author Borgsmüller, Nico
Gloaguen, Yoann
Opialla, Tobias
Blanc, Eric
Sicard, Emilie
Royer, Anne-Lise
Le Bizec, Bruno
Durand, Stéphanie
Migné, Carole
Pétéra, Mélanie
Pujos-Guillot, Estelle
Giacomoni, Franck
Guitton, Yann
Beule, Dieter
Kirwan, Jennifer
author_facet Borgsmüller, Nico
Gloaguen, Yoann
Opialla, Tobias
Blanc, Eric
Sicard, Emilie
Royer, Anne-Lise
Le Bizec, Bruno
Durand, Stéphanie
Migné, Carole
Pétéra, Mélanie
Pujos-Guillot, Estelle
Giacomoni, Franck
Guitton, Yann
Beule, Dieter
Kirwan, Jennifer
author_sort Borgsmüller, Nico
collection PubMed
description Lack of reliable peak detection impedes automated analysis of large-scale gas chromatography-mass spectrometry (GC-MS) metabolomics datasets. Performance and outcome of individual peak-picking algorithms can differ widely depending on both algorithmic approach and parameters, as well as data acquisition method. Therefore, comparing and contrasting between algorithms is difficult. Here we present a workflow for improved peak picking (WiPP), a parameter optimising, multi-algorithm peak detection for GC-MS metabolomics. WiPP evaluates the quality of detected peaks using a machine learning-based classification scheme based on seven peak classes. The quality information returned by the classifier for each individual peak is merged with results from different peak detection algorithms to create one final high-quality peak set for immediate down-stream analysis. Medium- and low-quality peaks are kept for further inspection. By applying WiPP to standard compound mixes and a complex biological dataset, we demonstrate that peak detection is improved through the novel way to assign peak quality, an automated parameter optimisation, and results in integration across different embedded peak picking algorithms. Furthermore, our approach can provide an impartial performance comparison of different peak picking algorithms. WiPP is freely available on GitHub (https://github.com/bihealth/WiPP) under MIT licence.
format Online
Article
Text
id pubmed-6780109
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-67801092019-10-30 WiPP: Workflow for Improved Peak Picking for Gas Chromatography-Mass Spectrometry (GC-MS) Data Borgsmüller, Nico Gloaguen, Yoann Opialla, Tobias Blanc, Eric Sicard, Emilie Royer, Anne-Lise Le Bizec, Bruno Durand, Stéphanie Migné, Carole Pétéra, Mélanie Pujos-Guillot, Estelle Giacomoni, Franck Guitton, Yann Beule, Dieter Kirwan, Jennifer Metabolites Article Lack of reliable peak detection impedes automated analysis of large-scale gas chromatography-mass spectrometry (GC-MS) metabolomics datasets. Performance and outcome of individual peak-picking algorithms can differ widely depending on both algorithmic approach and parameters, as well as data acquisition method. Therefore, comparing and contrasting between algorithms is difficult. Here we present a workflow for improved peak picking (WiPP), a parameter optimising, multi-algorithm peak detection for GC-MS metabolomics. WiPP evaluates the quality of detected peaks using a machine learning-based classification scheme based on seven peak classes. The quality information returned by the classifier for each individual peak is merged with results from different peak detection algorithms to create one final high-quality peak set for immediate down-stream analysis. Medium- and low-quality peaks are kept for further inspection. By applying WiPP to standard compound mixes and a complex biological dataset, we demonstrate that peak detection is improved through the novel way to assign peak quality, an automated parameter optimisation, and results in integration across different embedded peak picking algorithms. Furthermore, our approach can provide an impartial performance comparison of different peak picking algorithms. WiPP is freely available on GitHub (https://github.com/bihealth/WiPP) under MIT licence. MDPI 2019-08-21 /pmc/articles/PMC6780109/ /pubmed/31438611 http://dx.doi.org/10.3390/metabo9090171 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Borgsmüller, Nico
Gloaguen, Yoann
Opialla, Tobias
Blanc, Eric
Sicard, Emilie
Royer, Anne-Lise
Le Bizec, Bruno
Durand, Stéphanie
Migné, Carole
Pétéra, Mélanie
Pujos-Guillot, Estelle
Giacomoni, Franck
Guitton, Yann
Beule, Dieter
Kirwan, Jennifer
WiPP: Workflow for Improved Peak Picking for Gas Chromatography-Mass Spectrometry (GC-MS) Data
title WiPP: Workflow for Improved Peak Picking for Gas Chromatography-Mass Spectrometry (GC-MS) Data
title_full WiPP: Workflow for Improved Peak Picking for Gas Chromatography-Mass Spectrometry (GC-MS) Data
title_fullStr WiPP: Workflow for Improved Peak Picking for Gas Chromatography-Mass Spectrometry (GC-MS) Data
title_full_unstemmed WiPP: Workflow for Improved Peak Picking for Gas Chromatography-Mass Spectrometry (GC-MS) Data
title_short WiPP: Workflow for Improved Peak Picking for Gas Chromatography-Mass Spectrometry (GC-MS) Data
title_sort wipp: workflow for improved peak picking for gas chromatography-mass spectrometry (gc-ms) data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780109/
https://www.ncbi.nlm.nih.gov/pubmed/31438611
http://dx.doi.org/10.3390/metabo9090171
work_keys_str_mv AT borgsmullernico wippworkflowforimprovedpeakpickingforgaschromatographymassspectrometrygcmsdata
AT gloaguenyoann wippworkflowforimprovedpeakpickingforgaschromatographymassspectrometrygcmsdata
AT opiallatobias wippworkflowforimprovedpeakpickingforgaschromatographymassspectrometrygcmsdata
AT blanceric wippworkflowforimprovedpeakpickingforgaschromatographymassspectrometrygcmsdata
AT sicardemilie wippworkflowforimprovedpeakpickingforgaschromatographymassspectrometrygcmsdata
AT royerannelise wippworkflowforimprovedpeakpickingforgaschromatographymassspectrometrygcmsdata
AT lebizecbruno wippworkflowforimprovedpeakpickingforgaschromatographymassspectrometrygcmsdata
AT durandstephanie wippworkflowforimprovedpeakpickingforgaschromatographymassspectrometrygcmsdata
AT mignecarole wippworkflowforimprovedpeakpickingforgaschromatographymassspectrometrygcmsdata
AT peteramelanie wippworkflowforimprovedpeakpickingforgaschromatographymassspectrometrygcmsdata
AT pujosguillotestelle wippworkflowforimprovedpeakpickingforgaschromatographymassspectrometrygcmsdata
AT giacomonifranck wippworkflowforimprovedpeakpickingforgaschromatographymassspectrometrygcmsdata
AT guittonyann wippworkflowforimprovedpeakpickingforgaschromatographymassspectrometrygcmsdata
AT beuledieter wippworkflowforimprovedpeakpickingforgaschromatographymassspectrometrygcmsdata
AT kirwanjennifer wippworkflowforimprovedpeakpickingforgaschromatographymassspectrometrygcmsdata