Cargando…
In Vivo Effects of A Pro-PO System Inhibitor on the Phagocytosis of Xenorhabdus Nematophila in Galleria Mellonella Larvae
Xenorhabdus nematophila is a Gram-negative bacterium symbiont of the entomopathogen nematode Steinernema carpocapsae whose immunosuppressive properties over host’s immune response have been thoroughly investigated. In particular, live X. nematophila actively impairs phagocytosis in host’s hemocytes...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780223/ https://www.ncbi.nlm.nih.gov/pubmed/31443446 http://dx.doi.org/10.3390/insects10090263 |
_version_ | 1783457080504483840 |
---|---|
author | De Lerma Barbaro, Andrea Gariboldi, Marzia B. Mastore, Maristella Brivio, Maurizio F. Giovannardi, Stefano |
author_facet | De Lerma Barbaro, Andrea Gariboldi, Marzia B. Mastore, Maristella Brivio, Maurizio F. Giovannardi, Stefano |
author_sort | De Lerma Barbaro, Andrea |
collection | PubMed |
description | Xenorhabdus nematophila is a Gram-negative bacterium symbiont of the entomopathogen nematode Steinernema carpocapsae whose immunosuppressive properties over host’s immune response have been thoroughly investigated. In particular, live X. nematophila actively impairs phagocytosis in host’s hemocytes through the secretion of inhibitors of eicosanoids synthesis. In this article we have investigated the cell surface structural features of X. nematophila responsible for the elusion from phagocytosis. To this end we have studied the uptake of heat-killed (hk), fluorescein isothiocyanate (FITC)-labeled X. nematophila by phagocytes from both a host insect and a mammalian species. In vitro dead X. nematophila passively resists engulfment by insect hemocytes without impairing the phagocytosis machinery whereas, unexpectedly, in vivo a significant phagocytosis of dead X. nematophila was observed. X. nematophila in vivo phagocytosis was increased by the co-injection of the specific inhibitor of pro-phenoloxidase (PO) system phenylthiourea (PTU), even if these effects were not observed in in vitro tests. Furthermore, biochemical modifications of X. nematophila cell wall implement in vivo phagocytosis, suggesting that this bacterium avoid phagocytosis because the ligand of phagocytic receptors is somehow buried or disguised in the cell wall. Finally, dead X. nematophila escapes engulfment even by human phagocytes suggesting that X. nematophila could be a useful model to investigate escape from phagocytosis by mammalian macrophages. |
format | Online Article Text |
id | pubmed-6780223 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67802232019-10-30 In Vivo Effects of A Pro-PO System Inhibitor on the Phagocytosis of Xenorhabdus Nematophila in Galleria Mellonella Larvae De Lerma Barbaro, Andrea Gariboldi, Marzia B. Mastore, Maristella Brivio, Maurizio F. Giovannardi, Stefano Insects Article Xenorhabdus nematophila is a Gram-negative bacterium symbiont of the entomopathogen nematode Steinernema carpocapsae whose immunosuppressive properties over host’s immune response have been thoroughly investigated. In particular, live X. nematophila actively impairs phagocytosis in host’s hemocytes through the secretion of inhibitors of eicosanoids synthesis. In this article we have investigated the cell surface structural features of X. nematophila responsible for the elusion from phagocytosis. To this end we have studied the uptake of heat-killed (hk), fluorescein isothiocyanate (FITC)-labeled X. nematophila by phagocytes from both a host insect and a mammalian species. In vitro dead X. nematophila passively resists engulfment by insect hemocytes without impairing the phagocytosis machinery whereas, unexpectedly, in vivo a significant phagocytosis of dead X. nematophila was observed. X. nematophila in vivo phagocytosis was increased by the co-injection of the specific inhibitor of pro-phenoloxidase (PO) system phenylthiourea (PTU), even if these effects were not observed in in vitro tests. Furthermore, biochemical modifications of X. nematophila cell wall implement in vivo phagocytosis, suggesting that this bacterium avoid phagocytosis because the ligand of phagocytic receptors is somehow buried or disguised in the cell wall. Finally, dead X. nematophila escapes engulfment even by human phagocytes suggesting that X. nematophila could be a useful model to investigate escape from phagocytosis by mammalian macrophages. MDPI 2019-08-22 /pmc/articles/PMC6780223/ /pubmed/31443446 http://dx.doi.org/10.3390/insects10090263 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article De Lerma Barbaro, Andrea Gariboldi, Marzia B. Mastore, Maristella Brivio, Maurizio F. Giovannardi, Stefano In Vivo Effects of A Pro-PO System Inhibitor on the Phagocytosis of Xenorhabdus Nematophila in Galleria Mellonella Larvae |
title | In Vivo Effects of A Pro-PO System Inhibitor on the Phagocytosis of Xenorhabdus Nematophila in Galleria Mellonella Larvae |
title_full | In Vivo Effects of A Pro-PO System Inhibitor on the Phagocytosis of Xenorhabdus Nematophila in Galleria Mellonella Larvae |
title_fullStr | In Vivo Effects of A Pro-PO System Inhibitor on the Phagocytosis of Xenorhabdus Nematophila in Galleria Mellonella Larvae |
title_full_unstemmed | In Vivo Effects of A Pro-PO System Inhibitor on the Phagocytosis of Xenorhabdus Nematophila in Galleria Mellonella Larvae |
title_short | In Vivo Effects of A Pro-PO System Inhibitor on the Phagocytosis of Xenorhabdus Nematophila in Galleria Mellonella Larvae |
title_sort | in vivo effects of a pro-po system inhibitor on the phagocytosis of xenorhabdus nematophila in galleria mellonella larvae |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780223/ https://www.ncbi.nlm.nih.gov/pubmed/31443446 http://dx.doi.org/10.3390/insects10090263 |
work_keys_str_mv | AT delermabarbaroandrea invivoeffectsofaproposysteminhibitoronthephagocytosisofxenorhabdusnematophilaingalleriamellonellalarvae AT gariboldimarziab invivoeffectsofaproposysteminhibitoronthephagocytosisofxenorhabdusnematophilaingalleriamellonellalarvae AT mastoremaristella invivoeffectsofaproposysteminhibitoronthephagocytosisofxenorhabdusnematophilaingalleriamellonellalarvae AT briviomauriziof invivoeffectsofaproposysteminhibitoronthephagocytosisofxenorhabdusnematophilaingalleriamellonellalarvae AT giovannardistefano invivoeffectsofaproposysteminhibitoronthephagocytosisofxenorhabdusnematophilaingalleriamellonellalarvae |