Cargando…
Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation
The mechanical behavior of graphene/polymer interfaces in the graphene-reinforced epoxy nanocomposite is one of the factors that dictates the deformation and damage response of the nanocomposites. In this study, hybrid molecular dynamic (MD) and finite element (FE) simulations of a graphene/polymer...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780271/ https://www.ncbi.nlm.nih.gov/pubmed/31480660 http://dx.doi.org/10.3390/polym11091435 |
_version_ | 1783457092788551680 |
---|---|
author | Koloor, S. S. R. Rahimian-Koloor, S. M. Karimzadeh, A. Hamdi, M. Petrů, Michal Tamin, M. N. |
author_facet | Koloor, S. S. R. Rahimian-Koloor, S. M. Karimzadeh, A. Hamdi, M. Petrů, Michal Tamin, M. N. |
author_sort | Koloor, S. S. R. |
collection | PubMed |
description | The mechanical behavior of graphene/polymer interfaces in the graphene-reinforced epoxy nanocomposite is one of the factors that dictates the deformation and damage response of the nanocomposites. In this study, hybrid molecular dynamic (MD) and finite element (FE) simulations of a graphene/polymer nanocomposite are developed to characterize the elastic-damage behavior of graphene/polymer interfaces under a tensile separation condition. The MD results show that the graphene/epoxy interface behaves in the form of elastic-softening exponential regressive law. The FE results verify the adequacy of the cohesive zone model in accurate prediction of the interface damage behavior. The graphene/epoxy cohesive interface is characterized by normal stiffness, tensile strength, and fracture energy of 5 × 10(−8) (aPa·nm(−1)), 9.75 × 10(−10) (nm), 2.1 × 10(−10) (N·nm(−1)) respectively, that is followed by an exponential regressive law with the exponent, α = 7.74. It is shown that the commonly assumed bilinear softening law of the cohesive interface could lead up to 55% error in the predicted separation of the interface. |
format | Online Article Text |
id | pubmed-6780271 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67802712019-10-30 Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation Koloor, S. S. R. Rahimian-Koloor, S. M. Karimzadeh, A. Hamdi, M. Petrů, Michal Tamin, M. N. Polymers (Basel) Article The mechanical behavior of graphene/polymer interfaces in the graphene-reinforced epoxy nanocomposite is one of the factors that dictates the deformation and damage response of the nanocomposites. In this study, hybrid molecular dynamic (MD) and finite element (FE) simulations of a graphene/polymer nanocomposite are developed to characterize the elastic-damage behavior of graphene/polymer interfaces under a tensile separation condition. The MD results show that the graphene/epoxy interface behaves in the form of elastic-softening exponential regressive law. The FE results verify the adequacy of the cohesive zone model in accurate prediction of the interface damage behavior. The graphene/epoxy cohesive interface is characterized by normal stiffness, tensile strength, and fracture energy of 5 × 10(−8) (aPa·nm(−1)), 9.75 × 10(−10) (nm), 2.1 × 10(−10) (N·nm(−1)) respectively, that is followed by an exponential regressive law with the exponent, α = 7.74. It is shown that the commonly assumed bilinear softening law of the cohesive interface could lead up to 55% error in the predicted separation of the interface. MDPI 2019-09-02 /pmc/articles/PMC6780271/ /pubmed/31480660 http://dx.doi.org/10.3390/polym11091435 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Koloor, S. S. R. Rahimian-Koloor, S. M. Karimzadeh, A. Hamdi, M. Petrů, Michal Tamin, M. N. Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation |
title | Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation |
title_full | Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation |
title_fullStr | Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation |
title_full_unstemmed | Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation |
title_short | Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation |
title_sort | nano-level damage characterization of graphene/polymer cohesive interface under tensile separation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780271/ https://www.ncbi.nlm.nih.gov/pubmed/31480660 http://dx.doi.org/10.3390/polym11091435 |
work_keys_str_mv | AT koloorssr nanoleveldamagecharacterizationofgraphenepolymercohesiveinterfaceundertensileseparation AT rahimiankoloorsm nanoleveldamagecharacterizationofgraphenepolymercohesiveinterfaceundertensileseparation AT karimzadeha nanoleveldamagecharacterizationofgraphenepolymercohesiveinterfaceundertensileseparation AT hamdim nanoleveldamagecharacterizationofgraphenepolymercohesiveinterfaceundertensileseparation AT petrumichal nanoleveldamagecharacterizationofgraphenepolymercohesiveinterfaceundertensileseparation AT taminmn nanoleveldamagecharacterizationofgraphenepolymercohesiveinterfaceundertensileseparation |