Cargando…

Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation

The mechanical behavior of graphene/polymer interfaces in the graphene-reinforced epoxy nanocomposite is one of the factors that dictates the deformation and damage response of the nanocomposites. In this study, hybrid molecular dynamic (MD) and finite element (FE) simulations of a graphene/polymer...

Descripción completa

Detalles Bibliográficos
Autores principales: Koloor, S. S. R., Rahimian-Koloor, S. M., Karimzadeh, A., Hamdi, M., Petrů, Michal, Tamin, M. N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780271/
https://www.ncbi.nlm.nih.gov/pubmed/31480660
http://dx.doi.org/10.3390/polym11091435
_version_ 1783457092788551680
author Koloor, S. S. R.
Rahimian-Koloor, S. M.
Karimzadeh, A.
Hamdi, M.
Petrů, Michal
Tamin, M. N.
author_facet Koloor, S. S. R.
Rahimian-Koloor, S. M.
Karimzadeh, A.
Hamdi, M.
Petrů, Michal
Tamin, M. N.
author_sort Koloor, S. S. R.
collection PubMed
description The mechanical behavior of graphene/polymer interfaces in the graphene-reinforced epoxy nanocomposite is one of the factors that dictates the deformation and damage response of the nanocomposites. In this study, hybrid molecular dynamic (MD) and finite element (FE) simulations of a graphene/polymer nanocomposite are developed to characterize the elastic-damage behavior of graphene/polymer interfaces under a tensile separation condition. The MD results show that the graphene/epoxy interface behaves in the form of elastic-softening exponential regressive law. The FE results verify the adequacy of the cohesive zone model in accurate prediction of the interface damage behavior. The graphene/epoxy cohesive interface is characterized by normal stiffness, tensile strength, and fracture energy of 5 × 10(−8) (aPa·nm(−1)), 9.75 × 10(−10) (nm), 2.1 × 10(−10) (N·nm(−1)) respectively, that is followed by an exponential regressive law with the exponent, α = 7.74. It is shown that the commonly assumed bilinear softening law of the cohesive interface could lead up to 55% error in the predicted separation of the interface.
format Online
Article
Text
id pubmed-6780271
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-67802712019-10-30 Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation Koloor, S. S. R. Rahimian-Koloor, S. M. Karimzadeh, A. Hamdi, M. Petrů, Michal Tamin, M. N. Polymers (Basel) Article The mechanical behavior of graphene/polymer interfaces in the graphene-reinforced epoxy nanocomposite is one of the factors that dictates the deformation and damage response of the nanocomposites. In this study, hybrid molecular dynamic (MD) and finite element (FE) simulations of a graphene/polymer nanocomposite are developed to characterize the elastic-damage behavior of graphene/polymer interfaces under a tensile separation condition. The MD results show that the graphene/epoxy interface behaves in the form of elastic-softening exponential regressive law. The FE results verify the adequacy of the cohesive zone model in accurate prediction of the interface damage behavior. The graphene/epoxy cohesive interface is characterized by normal stiffness, tensile strength, and fracture energy of 5 × 10(−8) (aPa·nm(−1)), 9.75 × 10(−10) (nm), 2.1 × 10(−10) (N·nm(−1)) respectively, that is followed by an exponential regressive law with the exponent, α = 7.74. It is shown that the commonly assumed bilinear softening law of the cohesive interface could lead up to 55% error in the predicted separation of the interface. MDPI 2019-09-02 /pmc/articles/PMC6780271/ /pubmed/31480660 http://dx.doi.org/10.3390/polym11091435 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Koloor, S. S. R.
Rahimian-Koloor, S. M.
Karimzadeh, A.
Hamdi, M.
Petrů, Michal
Tamin, M. N.
Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation
title Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation
title_full Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation
title_fullStr Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation
title_full_unstemmed Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation
title_short Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separation
title_sort nano-level damage characterization of graphene/polymer cohesive interface under tensile separation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780271/
https://www.ncbi.nlm.nih.gov/pubmed/31480660
http://dx.doi.org/10.3390/polym11091435
work_keys_str_mv AT koloorssr nanoleveldamagecharacterizationofgraphenepolymercohesiveinterfaceundertensileseparation
AT rahimiankoloorsm nanoleveldamagecharacterizationofgraphenepolymercohesiveinterfaceundertensileseparation
AT karimzadeha nanoleveldamagecharacterizationofgraphenepolymercohesiveinterfaceundertensileseparation
AT hamdim nanoleveldamagecharacterizationofgraphenepolymercohesiveinterfaceundertensileseparation
AT petrumichal nanoleveldamagecharacterizationofgraphenepolymercohesiveinterfaceundertensileseparation
AT taminmn nanoleveldamagecharacterizationofgraphenepolymercohesiveinterfaceundertensileseparation