Cargando…

Determining Deformation Transition in Polyethylene under Tensile Loading

The multi-relaxation (MR) test was developed based on the concept that stress relaxation behavior can be used to reflect the material state of polyethylene (PE) under tension. On the basis of this concept, critical stroke for the onset of plastic deformation in the crystalline phase, named the first...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Na, Jar, P.-Y. Ben
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780330/
https://www.ncbi.nlm.nih.gov/pubmed/31466395
http://dx.doi.org/10.3390/polym11091415
Descripción
Sumario:The multi-relaxation (MR) test was developed based on the concept that stress relaxation behavior can be used to reflect the material state of polyethylene (PE) under tension. On the basis of this concept, critical stroke for the onset of plastic deformation in the crystalline phase, named the first critical stroke, was determined using the MR test. Results from wide angle X-ray scattering suggest that phase transformation occurred in the crystalline phase of PE after the specimen was stretched beyond the first critical stroke. In this work, the MR test was applied to six PEs of different mass densities to determine their first critical strokes and the corresponding total and quasi-static (QS) stress values. The results show that the first critical stroke had very similar values among the six PEs. More interestingly, the ratio of the QS stress at the first critical stroke to the yield stress from the standard tensile test showed little dependence on PE density. Therefore, it was possible to use the popular short-term tensile test to characterize the critical QS component of the applied stress to initiate plastic deformation in the crystalline phase, which is expected to play a significant role on the long-term, load-carrying applications of PE.