Cargando…

Untargeted Metabolomics Toward Systematic Characterization of Antioxidant Compounds in Betulaceae Family Plant Extracts

Plant species have traditionally been revered for their unparalleled pharmacognostic applications. We outline a non-iterative multi-parallel metabolomic-cum-bioassay-guided methodology toward the functional characterization of ethanol extracts from the Betulaceae family plants (n = 10). We performed...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Sunmin, Oh, Dong-Gu, Singh, Digar, Lee, Hye Jin, Kim, Ga Ryun, Lee, Sarah, Lee, Jong Seok, Lee, Choong Hwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780370/
https://www.ncbi.nlm.nih.gov/pubmed/31527409
http://dx.doi.org/10.3390/metabo9090186
Descripción
Sumario:Plant species have traditionally been revered for their unparalleled pharmacognostic applications. We outline a non-iterative multi-parallel metabolomic-cum-bioassay-guided methodology toward the functional characterization of ethanol extracts from the Betulaceae family plants (n = 10). We performed mass spectrometry (MS)-based multivariate analyses and bioassay-guided (ABTS antioxidant activity and cytoprotective effects against H(2)O(2)-induced cell damage) analyses of SPE fractions. A clearly distinct metabolomic pattern coupled with significantly higher bioactivities was observed for 40% methanol SPE eluate. Further, the 40% SPE eluate was subjected to preparative high-performance liquid chromatography (prep-HPLC) analysis, yielding 72 sub-fractions (1 min(−1)), with the highest antioxidant activities observed for the 15 min and 31 min sub-fractions. We simultaneously performed hyphenated-MS-based metabolite characterization of bioactive components for both the 40% methanol SPE fraction and its prep-HPLC sub-fraction (15 min and 31 min). Altogether, 19 candidate metabolites were mainly observed to contribute toward the observed bioactivities. In particular, ethyl gallate was mainly observed to affect the antioxidant activities of SPE and prep-HPLC fractions of Alnus firma extracts. We propose an integrated metabolomic-cum-bioassay-guided approach for the expeditious selection and characterization of discriminant metabolites with desired phenotypes or bioactivities.