Cargando…
Durable Epoxy@ZnO Coating for Improvement of Hydrophobicity and Color Stability of Wood
The hydrophobicity and color stability of wood are important properties that can be easily changed when wood is used as a raw material for outdoor products, reducing the service life of wood. Herein, an epoxy@ZnO coating was applied by a two-step simple spray coating method to improve the hydrophobi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780539/ https://www.ncbi.nlm.nih.gov/pubmed/31450769 http://dx.doi.org/10.3390/polym11091388 |
Sumario: | The hydrophobicity and color stability of wood are important properties that can be easily changed when wood is used as a raw material for outdoor products, reducing the service life of wood. Herein, an epoxy@ZnO coating was applied by a two-step simple spray coating method to improve the hydrophobicity and color stability of Styrax tonkinensis wood. The hydrophobicity, robustness of coating, as well as the color stability of uncoated wood samples and epoxy@ZnO coated wood samples were evaluated. The microstructure morphology and crystal structures of the coating were also characterized by a field-emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) analysis, respectively. Results showed that the obtained epoxy@ZnO coating was not only superhydrophobic with an average water contact angle of 154.1°, but also maintained superhydrophobicity with an average water contact angle of 149.6° after five water jetting tests. The color stability of the coated wood samples was improved by around 50% compared to that of uncoated wood samples. Additionally, a continuous epoxy@ZnO coating with hierarchical micro/nanoscale structures constructed by the wurtzite hexagonal structure of ZnO micro/nanoparticles on wood surfaces was confirmed. |
---|