Cargando…

Health Monitoring of Metallic Structures with Electromechanical Impedance and Piezoelectric Sensors

In order to monitor the health condition of structures in a more sensitive and accurate way, a novel and universal methodology called direct coupling mechanical impedance (DCMI) for characteristic signatures extraction is presented in this paper. This methodology is used to obtain DCMI signatures fr...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Jianjian, Wang, Yishou, Qing, Xinlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781029/
https://www.ncbi.nlm.nih.gov/pubmed/31492015
http://dx.doi.org/10.3390/nano9091268
Descripción
Sumario:In order to monitor the health condition of structures in a more sensitive and accurate way, a novel and universal methodology called direct coupling mechanical impedance (DCMI) for characteristic signatures extraction is presented in this paper. This methodology is used to obtain DCMI signatures from measured raw signatures (RSs) with the surface-bonded piezoelectric sensors (PZT), which is developed from a pertinent electromechanical impedance (EMI) theoretical model for surface-bonded circular PZT. The proposed DCMI methodology has the advantages of simple calculation and magnifying the signatures when compared with the existing methods. Combining the extracted DCMI signatures with the root mean square deviation (RMSD) index is able to quantify the correlation between the health condition and the signatures variation more effectively. To verify the effectiveness of proposed DCMI methodology, experiments are conducted on aluminum plates and a part of fuselage in detail. The experimental results sufficiently demonstrate that the presented universal DCMI methodology possesses better sensitivity than the raw signatures when utilized for evaluating the health condition of metallic structures, including those made of metal-matrix nanomaterials.