Cargando…
AIKYATAN: mapping distal regulatory elements using convolutional learning on GPU
BACKGROUND: The data deluge can leverage sophisticated ML techniques for functionally annotating the regulatory non-coding genome. The challenge lies in selecting the appropriate classifier for the specific functional annotation problem, within the bounds of the hardware constraints and the model’s...
Autores principales: | Fang, Chih-Hao, Theera-Ampornpunt, Nawanol, Roth, Michael A., Grama, Ananth, Chaterji, Somali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781298/ https://www.ncbi.nlm.nih.gov/pubmed/31590652 http://dx.doi.org/10.1186/s12859-019-3049-1 |
Ejemplares similares
-
Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions
por: Kim, Seong Gon, et al.
Publicado: (2016) -
Early bread mold detection through microscopic images using convolutional neural network
por: Treepong, Panisa, et al.
Publicado: (2023) -
EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm
por: Kim, Seong Gon, et al.
Publicado: (2016) -
MicroRNA target prediction using thermodynamic and sequence curves
por: Ghoshal, Asish, et al.
Publicado: (2015) -
Erratum to: ‘MicroRNA target prediction using thermodynamic and sequence curves’
por: Ghoshal, Asish, et al.
Publicado: (2016)