Cargando…
Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56
During mitosis, the formation of microtubule–kinetochore attachments is monitored by the serine/threonine kinase monopolar spindle 1 (MPS1). MPS1 is recruited to unattached kinetochores where it phosphorylates KNL1, BUB1, and MAD1 to initiate the spindle assembly checkpoint. This arrests the cell cy...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781431/ https://www.ncbi.nlm.nih.gov/pubmed/31511308 http://dx.doi.org/10.1083/jcb.201905026 |
_version_ | 1783457371600715776 |
---|---|
author | Hayward, Daniel Bancroft, James Mangat, Davinderpreet Alfonso-Pérez, Tatiana Dugdale, Sholto McCarthy, Julia Barr, Francis A. Gruneberg, Ulrike |
author_facet | Hayward, Daniel Bancroft, James Mangat, Davinderpreet Alfonso-Pérez, Tatiana Dugdale, Sholto McCarthy, Julia Barr, Francis A. Gruneberg, Ulrike |
author_sort | Hayward, Daniel |
collection | PubMed |
description | During mitosis, the formation of microtubule–kinetochore attachments is monitored by the serine/threonine kinase monopolar spindle 1 (MPS1). MPS1 is recruited to unattached kinetochores where it phosphorylates KNL1, BUB1, and MAD1 to initiate the spindle assembly checkpoint. This arrests the cell cycle until all kinetochores have been stably captured by microtubules. MPS1 also contributes to the error correction process rectifying incorrect kinetochore attachments. MPS1 activity at kinetochores requires autophosphorylation at multiple sites including threonine 676 in the activation segment or “T-loop.” We now demonstrate that the BUBR1-bound pool of PP2A-B56 regulates MPS1 T-loop autophosphorylation and hence activation status in mammalian cells. Overriding this regulation using phosphomimetic mutations in the MPS1 T-loop to generate a constitutively active kinase results in a prolonged mitotic arrest with continuous turnover of microtubule–kinetochore attachments. Dynamic regulation of MPS1 catalytic activity by kinetochore-localized PP2A-B56 is thus critical for controlled MPS1 activity and timely cell cycle progression. |
format | Online Article Text |
id | pubmed-6781431 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-67814312020-04-07 Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56 Hayward, Daniel Bancroft, James Mangat, Davinderpreet Alfonso-Pérez, Tatiana Dugdale, Sholto McCarthy, Julia Barr, Francis A. Gruneberg, Ulrike J Cell Biol Research Articles During mitosis, the formation of microtubule–kinetochore attachments is monitored by the serine/threonine kinase monopolar spindle 1 (MPS1). MPS1 is recruited to unattached kinetochores where it phosphorylates KNL1, BUB1, and MAD1 to initiate the spindle assembly checkpoint. This arrests the cell cycle until all kinetochores have been stably captured by microtubules. MPS1 also contributes to the error correction process rectifying incorrect kinetochore attachments. MPS1 activity at kinetochores requires autophosphorylation at multiple sites including threonine 676 in the activation segment or “T-loop.” We now demonstrate that the BUBR1-bound pool of PP2A-B56 regulates MPS1 T-loop autophosphorylation and hence activation status in mammalian cells. Overriding this regulation using phosphomimetic mutations in the MPS1 T-loop to generate a constitutively active kinase results in a prolonged mitotic arrest with continuous turnover of microtubule–kinetochore attachments. Dynamic regulation of MPS1 catalytic activity by kinetochore-localized PP2A-B56 is thus critical for controlled MPS1 activity and timely cell cycle progression. Rockefeller University Press 2019-10-07 2019-09-11 /pmc/articles/PMC6781431/ /pubmed/31511308 http://dx.doi.org/10.1083/jcb.201905026 Text en © 2019 Hayward et al. http://www.rupress.org/terms/https://creativecommons.org/licenses/by-nc-sa/4.0/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Research Articles Hayward, Daniel Bancroft, James Mangat, Davinderpreet Alfonso-Pérez, Tatiana Dugdale, Sholto McCarthy, Julia Barr, Francis A. Gruneberg, Ulrike Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56 |
title | Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56 |
title_full | Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56 |
title_fullStr | Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56 |
title_full_unstemmed | Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56 |
title_short | Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56 |
title_sort | checkpoint signaling and error correction require regulation of the mps1 t-loop by pp2a-b56 |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781431/ https://www.ncbi.nlm.nih.gov/pubmed/31511308 http://dx.doi.org/10.1083/jcb.201905026 |
work_keys_str_mv | AT haywarddaniel checkpointsignalinganderrorcorrectionrequireregulationofthemps1tloopbypp2ab56 AT bancroftjames checkpointsignalinganderrorcorrectionrequireregulationofthemps1tloopbypp2ab56 AT mangatdavinderpreet checkpointsignalinganderrorcorrectionrequireregulationofthemps1tloopbypp2ab56 AT alfonsopereztatiana checkpointsignalinganderrorcorrectionrequireregulationofthemps1tloopbypp2ab56 AT dugdalesholto checkpointsignalinganderrorcorrectionrequireregulationofthemps1tloopbypp2ab56 AT mccarthyjulia checkpointsignalinganderrorcorrectionrequireregulationofthemps1tloopbypp2ab56 AT barrfrancisa checkpointsignalinganderrorcorrectionrequireregulationofthemps1tloopbypp2ab56 AT grunebergulrike checkpointsignalinganderrorcorrectionrequireregulationofthemps1tloopbypp2ab56 |