Cargando…

Exosome complex genes mediate RNA degradation and predict survival in mantle cell lymphoma

Exosome complex (EXOSC) genes, which encode a multi-protein intracellular complex, mediate the degradation of various types of RNA molecules. EXOSCs, also known as polymyositis/scleroderma complexes, exist in eukaryotic cells and archaea, and primarily mediate 3′ to 5′mRNA degradation. However, how...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Weilong, Zhu, Junyong, He, Xue, Liu, Xiaoni, Li, Jinhang, Li, Wei, Yang, Ping, Wang, Jing, Hu, Kai, Zhang, Xiuru, Li, Xiru, Jing, Hongmei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781731/
https://www.ncbi.nlm.nih.gov/pubmed/31612023
http://dx.doi.org/10.3892/ol.2019.10850
Descripción
Sumario:Exosome complex (EXOSC) genes, which encode a multi-protein intracellular complex, mediate the degradation of various types of RNA molecules. EXOSCs, also known as polymyositis/scleroderma complexes, exist in eukaryotic cells and archaea, and primarily mediate 3′ to 5′mRNA degradation. However, how EXOSC genes are implicated in processes of B-cell immune-associated pathways and B-cell tumorigenesis remains unclear. The present bioinformatics study indicated that 6 of 10 EXOSC genes, particularly the EXO.index, were able to predict the survival of patients with mantle cell lymphoma (MCL), by analyzing gene expression profiles of 123 patients with MCL from the Gene Expression Omnibus database. The results suggested that EXOSC gene expression may be a molecular marker for MCL. Compared with the whole transcript profile, patients with MCL with a high EXO.index exhibited poorer survival and decreased RNA levels, which was also verified in a second dataset. The EXOSC genes may be associated with DNA repair and B-cell activation pathways, which may be the cause of poorer survival of patients with MCL.