Cargando…
Identification of potential key genes in esophageal adenocarcinoma using bioinformatics
Esophageal adenocarcinoma (EAC) is the predominant pathological subtype of esophageal cancer in Europe and the USA. The present bioinformatics study analyzed a high-throughput sequencing dataset, GSE94869, to determine differentially expressed genes (DEGs) in order to identify key genes, biological...
Autores principales: | Dong, Zhiyu, Wang, Junwen, Zhang, Haiqin, Zhan, Tingting, Chen, Ying, Xu, Shuchang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781836/ https://www.ncbi.nlm.nih.gov/pubmed/31616504 http://dx.doi.org/10.3892/etm.2019.7973 |
Ejemplares similares
-
Identification of prognostic risk factors for esophageal adenocarcinoma using bioinformatics analysis
por: Dong, Zhiyu, et al.
Publicado: (2018) -
A New Scoring System to Predict Poor Clinical Outcomes in Acute Nonvariceal Upper Gastrointestinal Bleeding Patients with High-Risk Stigmata
por: Dong, Zhiyu, et al.
Publicado: (2018) -
Identification of key genes associated with esophageal adenocarcinoma based on bioinformatics analysis
por: Qi, Weifeng, et al.
Publicado: (2021) -
Identification of genes and pathways in esophageal adenocarcinoma using bioinformatics analysis
por: He, Feng, et al.
Publicado: (2018) -
Identification of potential key molecular biomarkers in lung adenocarcinoma by bioinformatics analysis
por: Guo, Pengyi, et al.
Publicado: (2022)