Cargando…
Improved semi-supervised autoencoder for deception detection
Existing algorithms of speech-based deception detection are severely restricted by the lack of sufficient number of labelled data. However, a large amount of easily available unlabelled data has not been utilized in reality. To solve this problem, this paper proposes a semi-supervised additive noise...
Autores principales: | Fu, Hongliang, Lei, Peizhi, Tao, Huawei, Zhao, Li, Yang, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782094/ https://www.ncbi.nlm.nih.gov/pubmed/31593570 http://dx.doi.org/10.1371/journal.pone.0223361 |
Ejemplares similares
-
A Semi-Supervised Speech Deception Detection Algorithm Combining Acoustic Statistical Features and Time-Frequency Two-Dimensional Features
por: Fu, Hongliang, et al.
Publicado: (2023) -
Semi-Supervised Learning for Defect Segmentation with Autoencoder Auxiliary Module
por: Sae-ang, Bee-ing, et al.
Publicado: (2022) -
Semi-Supervised Nests of Melanocytes Segmentation Method Using Convolutional Autoencoders
por: Kucharski, Dariusz, et al.
Publicado: (2020) -
Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis
por: da Rosa, Tiago Gaspar, et al.
Publicado: (2022) -
Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification
por: Nejedly, Petr, et al.
Publicado: (2023)