Cargando…
Predicting weaning difficulty for planned extubation patients with an artificial neural network
This study aims to construct a neural network to predict weaning difficulty among planned extubation patients in intensive care units. This observational cohort study was conducted in eight adult ICUs in a medical center about adult patients experiencing planned extubation. The data of 3602 patients...
Autores principales: | Hsieh, Meng Hsuen, Hsieh, Meng Ju, Cheng, Ai-Chin, Chen, Chin-Ming, Hsieh, Chia-Chang, Chao, Chien-Ming, Lai, Chih-Cheng, Cheng, Kuo-Chen, Chou, Willy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783239/ https://www.ncbi.nlm.nih.gov/pubmed/31577746 http://dx.doi.org/10.1097/MD.0000000000017392 |
Ejemplares similares
-
Establishing predictors for successfully planned endotracheal extubation
por: Lai, Chih-Cheng, et al.
Publicado: (2016) -
Multidisciplinary interventions and continuous quality improvement to reduce unplanned extubation in adult intensive care units: A 15-year experience
por: Chao, Chien-Ming, et al.
Publicado: (2017) -
An Artificial Neural Network Model for Predicting Successful Extubation in Intensive Care Units
por: Hsieh, Meng-Hsuen, et al.
Publicado: (2018) -
Comparison of machine learning models for the prediction of mortality of patients with unplanned extubation in intensive care units
por: Hsieh, Meng Hsuen, et al.
Publicado: (2018) -
Global research trends in artificial intelligence for critical care with a focus on chord network charts: Bibliometric analysis
por: Cheng, Teng-Yun, et al.
Publicado: (2023)