Cargando…
Compendiums of cancer transcriptomes for machine learning applications
There are massive transcriptome profiles in the form of microarray. The challenge is that they are processed using diverse platforms and preprocessing tools, requiring considerable time and informatics expertise for cross-dataset analyses. If there exists a single, integrated data source, data-reuse...
Autores principales: | Lim, Su Bin, Tan, Swee Jin, Lim, Wan-Teck, Lim, Chwee Teck |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783425/ https://www.ncbi.nlm.nih.gov/pubmed/31594947 http://dx.doi.org/10.1038/s41597-019-0207-2 |
Ejemplares similares
-
A merged lung cancer transcriptome dataset for clinical predictive modeling
por: Lim, Su Bin, et al.
Publicado: (2018) -
An extracellular matrix-related prognostic and predictive indicator for early-stage non-small cell lung cancer
por: LIM, Su Bin, et al.
Publicado: (2017) -
Pan-cancer analysis connects tumor matrisome to immune response
por: Lim, Su Bin, et al.
Publicado: (2019) -
Curated compendium of human transcriptional biomarker data
por: Golightly, Nathan P., et al.
Publicado: (2018) -
Single-Cell Analysis of Circulating Tumor Cells: Why Heterogeneity Matters
por: Lim, Su Bin, et al.
Publicado: (2019)