Cargando…

QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize

Climate change will lead to increasing heat stress in the temperate regions of the world. The objectives of this study were the following: (I) to assess the phenotypic and genotypic diversity of traits related to heat tolerance of maize seedlings and dissect their genetic architecture by quantitativ...

Descripción completa

Detalles Bibliográficos
Autores principales: Inghelandt, Delphine Van, Frey, Felix P., Ries, David, Stich, Benjamin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783442/
https://www.ncbi.nlm.nih.gov/pubmed/31594984
http://dx.doi.org/10.1038/s41598-019-50853-2
_version_ 1783457552616390656
author Inghelandt, Delphine Van
Frey, Felix P.
Ries, David
Stich, Benjamin
author_facet Inghelandt, Delphine Van
Frey, Felix P.
Ries, David
Stich, Benjamin
author_sort Inghelandt, Delphine Van
collection PubMed
description Climate change will lead to increasing heat stress in the temperate regions of the world. The objectives of this study were the following: (I) to assess the phenotypic and genotypic diversity of traits related to heat tolerance of maize seedlings and dissect their genetic architecture by quantitative trait locus (QTL) mapping, (II) to compare the prediction ability of genome-wide prediction models using various numbers of KASP (Kompetitive Allele Specific PCR genotyping) single nucleotide polymorphisms (SNPs) and RAD (restriction site-associated DNA sequencing) SNPs, and (III) to examine the prediction ability of intra-, inter-, and mixed-pool calibrations. For the heat susceptibility index of five of the nine studied traits, we identified a total of six QTL, each explaining individually between 7 and 9% of the phenotypic variance. The prediction abilities observed for the genome-wide prediction models were high, especially for the within-population calibrations, and thus, the use of such approaches to select for heat tolerance at seedling stage is recommended. Furthermore, we have shown that for the traits examined in our study, populations created from inter-pool crosses are suitable training sets to predict populations derived from intra-pool crosses.
format Online
Article
Text
id pubmed-6783442
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-67834422019-10-16 QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize Inghelandt, Delphine Van Frey, Felix P. Ries, David Stich, Benjamin Sci Rep Article Climate change will lead to increasing heat stress in the temperate regions of the world. The objectives of this study were the following: (I) to assess the phenotypic and genotypic diversity of traits related to heat tolerance of maize seedlings and dissect their genetic architecture by quantitative trait locus (QTL) mapping, (II) to compare the prediction ability of genome-wide prediction models using various numbers of KASP (Kompetitive Allele Specific PCR genotyping) single nucleotide polymorphisms (SNPs) and RAD (restriction site-associated DNA sequencing) SNPs, and (III) to examine the prediction ability of intra-, inter-, and mixed-pool calibrations. For the heat susceptibility index of five of the nine studied traits, we identified a total of six QTL, each explaining individually between 7 and 9% of the phenotypic variance. The prediction abilities observed for the genome-wide prediction models were high, especially for the within-population calibrations, and thus, the use of such approaches to select for heat tolerance at seedling stage is recommended. Furthermore, we have shown that for the traits examined in our study, populations created from inter-pool crosses are suitable training sets to predict populations derived from intra-pool crosses. Nature Publishing Group UK 2019-10-08 /pmc/articles/PMC6783442/ /pubmed/31594984 http://dx.doi.org/10.1038/s41598-019-50853-2 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Inghelandt, Delphine Van
Frey, Felix P.
Ries, David
Stich, Benjamin
QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize
title QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize
title_full QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize
title_fullStr QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize
title_full_unstemmed QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize
title_short QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize
title_sort qtl mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783442/
https://www.ncbi.nlm.nih.gov/pubmed/31594984
http://dx.doi.org/10.1038/s41598-019-50853-2
work_keys_str_mv AT inghelandtdelphinevan qtlmappingandgenomewidepredictionofheattoleranceinmultipleconnectedpopulationsoftemperatemaize
AT freyfelixp qtlmappingandgenomewidepredictionofheattoleranceinmultipleconnectedpopulationsoftemperatemaize
AT riesdavid qtlmappingandgenomewidepredictionofheattoleranceinmultipleconnectedpopulationsoftemperatemaize
AT stichbenjamin qtlmappingandgenomewidepredictionofheattoleranceinmultipleconnectedpopulationsoftemperatemaize