Cargando…

Development of high-throughput ATR-FTIR technology for rapid triage of brain cancer

Non-specific symptoms, as well as the lack of a cost-effective test to triage patients in primary care, has resulted in increased time-to-diagnosis and a poor prognosis for brain cancer patients. A rapid, cost-effective, triage test could significantly improve this patient pathway. A blood test usin...

Descripción completa

Detalles Bibliográficos
Autores principales: Butler, Holly J., Brennan, Paul M., Cameron, James M., Finlayson, Duncan, Hegarty, Mark G., Jenkinson, Michael D., Palmer, David S., Smith, Benjamin R., Baker, Matthew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783469/
https://www.ncbi.nlm.nih.gov/pubmed/31594931
http://dx.doi.org/10.1038/s41467-019-12527-5
Descripción
Sumario:Non-specific symptoms, as well as the lack of a cost-effective test to triage patients in primary care, has resulted in increased time-to-diagnosis and a poor prognosis for brain cancer patients. A rapid, cost-effective, triage test could significantly improve this patient pathway. A blood test using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy for the detection of brain cancer, alongside machine learning technology, is advancing towards clinical translation. However, whilst the methodology is simple and does not require extensive sample preparation, the throughput of such an approach is limited. Here we describe the development of instrumentation for the analysis of serum that is able to differentiate cancer and control patients at a sensitivity and specificity of 93.2% and 92.8%. Furthermore, preliminary data from the first prospective clinical validation study of its kind are presented, demonstrating how this innovative technology can triage patients and allow rapid access to imaging.