Cargando…
AI Meets Exascale Computing: Advancing Cancer Research With Large-Scale High Performance Computing
The application of data science in cancer research has been boosted by major advances in three primary areas: (1) Data: diversity, amount, and availability of biomedical data; (2) Advances in Artificial Intelligence (AI) and Machine Learning (ML) algorithms that enable learning from complex, large-s...
Autores principales: | Bhattacharya, Tanmoy, Brettin, Thomas, Doroshow, James H., Evrard, Yvonne A., Greenspan, Emily J., Gryshuk, Amy L., Hoang, Thuc T., Lauzon, Carolyn B. Vea, Nissley, Dwight, Penberthy, Lynne, Stahlberg, Eric, Stevens, Rick, Streitz, Fred, Tourassi, Georgia, Xia, Fangfang, Zaki, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783509/ https://www.ncbi.nlm.nih.gov/pubmed/31632915 http://dx.doi.org/10.3389/fonc.2019.00984 |
Ejemplares similares
-
Simulations in the era of exascale computing
por: Chang, Choongseok, et al.
Publicado: (2023) -
Software for Exascale Computing : SPPEXA 2016-2019
por: Bungartz, Hans-Joachim, et al.
Publicado: (2020) -
Operational Intelligence for Distributed Computing Systems for Exascale Science
por: Di Girolamo, Alessandro, et al.
Publicado: (2020) -
Multiscale computing for science and engineering in the era of exascale performance
por: Hoekstra, Alfons G., et al.
Publicado: (2019) -
Editorial: Towards Exascale Solutions for Big Data Computing
por: Talia, Domenico, et al.
Publicado: (2022)