Cargando…
Salt-Induced Damage is Alleviated by Short-Term Pre-Cold Treatment in Bermudagrass (Cynodon dactylon)
Excess salinity is a major environmental stress that limits growth and development of plants. Improving salt stress tolerance of plants is important in order to enhance land utilization and crop yield. Cold priming has been reported to trigger the protective processes in plants that increase their s...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784090/ https://www.ncbi.nlm.nih.gov/pubmed/31540195 http://dx.doi.org/10.3390/plants8090347 |
Sumario: | Excess salinity is a major environmental stress that limits growth and development of plants. Improving salt stress tolerance of plants is important in order to enhance land utilization and crop yield. Cold priming has been reported to trigger the protective processes in plants that increase their stress tolerance. Bermudagrass (Cynodon dactylon) is one of the most widely used turfgrass species around the world. However, the effect of cold priming on salt tolerance of bermudagrass is largely unknown. In the present study, wild bermudagrass was pre-treated with 4 °C for 6 h before 150 mM NaCl treatment for one week. The results showed that the cell membrane stability, ion homeostasis and photosynthesis process which are usually negatively affected by salt stress in bermudagrass were alleviated by short-term pre-cold treatment. Additionally, the gene expression profile also corresponded to the change of physiological indexes in bermudagrass. The results suggest that cold priming plays a positive role in improving salt stress tolerance of bermudagrass. |
---|