Cargando…
The Statistical Optimisation of Recombinant β-glucosidase Production through a Two-Stage, Multi-Model, Design of Experiments Approach
β-glucosidases are a class of enzyme that are widely distributed in the living world, with examples noted in plants, fungi, animals and bacteria. They offer both hydrolysis and synthesis capacity for a wide range of biotechnological processes. However, the availability of native, or the production o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784099/ https://www.ncbi.nlm.nih.gov/pubmed/31323833 http://dx.doi.org/10.3390/bioengineering6030061 |
Sumario: | β-glucosidases are a class of enzyme that are widely distributed in the living world, with examples noted in plants, fungi, animals and bacteria. They offer both hydrolysis and synthesis capacity for a wide range of biotechnological processes. However, the availability of native, or the production of recombinant β-glucosidases, is currently a bottleneck in the widespread industrial application of this enzyme. In this present work, the production of recombinant β-glucosidase from Streptomyces griseus was optimised using a Design of Experiments strategy, comprising a two-stage, multi-model design. Three screening models were comparatively employed: Fractional Factorial, Plackett-Burman and Definitive Screening Design. Four variables (temperature, incubation time, tryptone, and OD(600 nm)) were experimentally identified as having statistically significant effects on the production of S.griseus recombinant β-glucosidase in E. coli BL21 (DE3). The four most influential variables were subsequently used to optimise recombinant β-glucosidase production, employing Central Composite Design under Response Surface Methodology. Optimal levels were identified as: OD(600 nm), 0.55; temperature, 26 °C; incubation time, 12 h; and tryptone, 15 g/L. This yielded a 2.62-fold increase in recombinant β-glucosidase production, in comparison to the pre-optimised process. Affinity chromatography resulted in homogeneous, purified β-glucosidase that was characterised in terms of pH stability, metal ion compatibility and kinetic rates for p-nitrophenyl-β-D-glucopyranoside (pNPG) and cellobiose catalysis. |
---|