Cargando…

Recent Advances in the Use of Polyhydroyalkanoates in Biomedicine

Polyhydroxyalkanoates (PHAs), a family of natural biopolyesters, are widely used in many applications, especially in biomedicine. Since they are produced by a variety of microorganisms, they possess special properties that synthetic polyesters do not have. Their biocompatibility, biodegradability, a...

Descripción completa

Detalles Bibliográficos
Autor principal: Rodriguez-Contreras, Alejandra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784168/
https://www.ncbi.nlm.nih.gov/pubmed/31547270
http://dx.doi.org/10.3390/bioengineering6030082
Descripción
Sumario:Polyhydroxyalkanoates (PHAs), a family of natural biopolyesters, are widely used in many applications, especially in biomedicine. Since they are produced by a variety of microorganisms, they possess special properties that synthetic polyesters do not have. Their biocompatibility, biodegradability, and non-toxicity are the crucial properties that make these biologically produced thermoplastics and elastomers suitable for their applications as biomaterials. Bacterial or archaeal fermentation by the combination of different carbohydrates or by the addition of specific inductors allows the bioproduction of a great variety of members from the PHAs family with diverse material properties. Poly(3-hydroxybutyrate) (PHB) and its copolymers, such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHVB) or poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (PHB4HB), are the most frequently used PHAs in the field of biomedicine. PHAs have been used in implantology as sutures and valves, in tissue engineering as bone graft substitutes, cartilage, stents for nerve repair, and cardiovascular patches. Due to their good biodegradability in the body and their breakdown products being unhazardous, they have also been remarkably applied as drug carriers for delivery systems. As lately there has been considerable and growing interest in the use of PHAs as biomaterials and their application in the field of medicine, this review provides an insight into the most recent scientific studies and advances in PHAs exploitation in biomedicine.