Cargando…
A Fusion Peptide in the Spike Protein of MERS Coronavirus
Coronaviruses represent current and emerging threats for many species, including humans. Middle East respiratory syndrome-related coronavirus (MERS-CoV) is responsible for sporadic infections in mostly Middle Eastern countries, with occasional transfer elsewhere. A key step in the MERS-CoV replicati...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784214/ https://www.ncbi.nlm.nih.gov/pubmed/31491938 http://dx.doi.org/10.3390/v11090825 |
Sumario: | Coronaviruses represent current and emerging threats for many species, including humans. Middle East respiratory syndrome-related coronavirus (MERS-CoV) is responsible for sporadic infections in mostly Middle Eastern countries, with occasional transfer elsewhere. A key step in the MERS-CoV replication cycle is the fusion of the virus and host cell membranes mediated by the virus spike protein, S. The location of the fusion peptide within the MERS S protein has not been precisely mapped. We used isolated peptides and giant unilamellar vesicles (GUV) to demonstrate membrane binding for a peptide located near the N-terminus of the S2 domain. Key residues required for activity were mapped by amino acid replacement and their relevance in vitro tested by their introduction into recombinant MERS S protein expressed in mammalian cells. Mutations preventing membrane binding in vitro also abolished S-mediated syncytium formation consistent with the identified peptide acting as the fusion peptide for the S protein of MERS-CoV. |
---|