Cargando…
The Cadherin Cry1Ac Binding-Region is Necessary for the Cooperative Effect with ABCC2 Transporter Enhancing Insecticidal Activity of Bacillus thuringiensis Cry1Ac Toxin
Bacillus thuringiensis Cry1Ac toxin binds to midgut proteins, as cadherin (CAD) and ABCC2 transporter, to form pores leading to larval death. In cell lines, co-expression of CAD and ABCC2 enhance Cry1Ac toxicity significantly, but the mechanism remains elusive. Here, we show that the expression of H...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784258/ https://www.ncbi.nlm.nih.gov/pubmed/31540044 http://dx.doi.org/10.3390/toxins11090538 |
Sumario: | Bacillus thuringiensis Cry1Ac toxin binds to midgut proteins, as cadherin (CAD) and ABCC2 transporter, to form pores leading to larval death. In cell lines, co-expression of CAD and ABCC2 enhance Cry1Ac toxicity significantly, but the mechanism remains elusive. Here, we show that the expression of Helicoverpa armigera CAD (HaCAD-GFP) in Hi5 cells induces susceptibility to Cry1Ac and enhanced Cry1Ac toxicity when co-expressed with H. armigera ABCC2 (HaABCC2-GFP), since Cry1Ac toxicity increased 735-fold compared to Hi5 cells expressing HaCAD-GFP alone or 28-fold compared to HaABCC2-GFP alone. In contrast, the expression of the Spodoptera litura CAD (SlCAD-GFP) in Hi5 cells did not induce susceptibility to Cry1Ac nor it potentiated Cry1Ac toxicity with HaABCC2-GFP. To identify the CAD regions involved in the enhancement of Cry1Ac toxicity with ABCC2, the different CAD domains were replaced between SlCAD-GFP and HaCad-GFP proteins, and cytotoxicity assays were performed in Hi5 cells in the absence or presence of HaABCC2-GFP. The HaCAD toxin-binding region (TB), specifically the CAD repeat-11, was necessary to enhance Cry1Ac toxicity with ABCC2. We propose that CAD TB is involved in recruiting Cry1Ac to localize it in a good position for its interaction with the ABCC2, resulting in efficient toxin membrane insertion enhancing Cry1Ac toxicity. |
---|