Cargando…

Unfolding Crease Patterns Inspired by Insect Wings and Variations of the Miura-ori with a Single Vein

In many disciplines, professionals are interested in folding patterns for their packing and shape changing capabilities. Many insects have folded wings fitting to their body morphology that can unfold to fly, support their weight and withstand external forces. This paper focuses on the main characte...

Descripción completa

Detalles Bibliográficos
Autores principales: Houette, Thibaut, Gjerde, Eric, Gruber, Petra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784296/
https://www.ncbi.nlm.nih.gov/pubmed/31284477
http://dx.doi.org/10.3390/biomimetics4030045
Descripción
Sumario:In many disciplines, professionals are interested in folding patterns for their packing and shape changing capabilities. Many insects have folded wings fitting to their body morphology that can unfold to fly, support their weight and withstand external forces. This paper focuses on the main characteristics emerging from folding patterns inspired and adapted from both insect wings and Miura-ori patterns, along with the actuation mechanism. Pneumatic actuators, similar to the venations on insect wings, are used to unfold these patterns. Depending on one vein’s placement, its inflation can unfold models with many creases. While a single vein cannot fold the model back, a snapping behavior, observed in some folding patterns, could be used to trigger the folding mechanism of a model. By presenting the characteristics of each folding pattern studied in this work, one could come forth with an application and choose the most efficient folding patterns based on the most suitable characteristics for this application. These folding patterns can then be optimized to address specific requirements by adapting their different parameters.