Cargando…
Bone Density and Implant Primary Stability. A Study on Equine Bone Blocks
Previous results on synthetic blocks mimicking bone indicate that bone density can be measured by the friction encountered by a rotating probe while it descends into bone, and that primary implant stability may be measured through the integral (I) of the torque–depth curve at implant insertion. This...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784737/ https://www.ncbi.nlm.nih.gov/pubmed/31266214 http://dx.doi.org/10.3390/dj7030073 |
_version_ | 1783457800489271296 |
---|---|
author | Orlando, Francesco Arosio, Federico Arosio, Paolo Di Stefano, Danilo Alessio |
author_facet | Orlando, Francesco Arosio, Federico Arosio, Paolo Di Stefano, Danilo Alessio |
author_sort | Orlando, Francesco |
collection | PubMed |
description | Previous results on synthetic blocks mimicking bone indicate that bone density can be measured by the friction encountered by a rotating probe while it descends into bone, and that primary implant stability may be measured through the integral (I) of the torque–depth curve at implant insertion. This study aims to repeat those tests on collagen-preserving equine bone blocks as they better reproduce the mechanical properties of natural bone. Fifteen cancellous equine blocks had their density measured using a measuring probe. This was compared to their known physical density through linear regression analysis. Implant placement was carried out into six cancellous equine blocks and primary stability was measured using (I), as well as the insertion torque (IT), the implant stability quotient (ISQ), and the reverse torque (RT). The relation between (I), (IT), (ISQ), and (RT) was investigated by correlation analysis. Bone density measured using the probe correlated significantly with actual density, both with (r = 0.764) and without irrigation (r = 0.977). (I) correlated significantly with IT and RT under all irrigation conditions, and with ISQ only without irrigation (r = 0.886). The results suggest that the probe provides actual bone density measurements. They also indicate that (I) measures primary implant stability and is more sensitive to density variations than IT, RT, and ISQ. Results are consistent with those obtained on synthetic blocks but suggest that equine bone blocks may better reproduce the mechanical properties of human cancellous alveolar bone. This should be the subject of additional studies. |
format | Online Article Text |
id | pubmed-6784737 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67847372019-10-16 Bone Density and Implant Primary Stability. A Study on Equine Bone Blocks Orlando, Francesco Arosio, Federico Arosio, Paolo Di Stefano, Danilo Alessio Dent J (Basel) Article Previous results on synthetic blocks mimicking bone indicate that bone density can be measured by the friction encountered by a rotating probe while it descends into bone, and that primary implant stability may be measured through the integral (I) of the torque–depth curve at implant insertion. This study aims to repeat those tests on collagen-preserving equine bone blocks as they better reproduce the mechanical properties of natural bone. Fifteen cancellous equine blocks had their density measured using a measuring probe. This was compared to their known physical density through linear regression analysis. Implant placement was carried out into six cancellous equine blocks and primary stability was measured using (I), as well as the insertion torque (IT), the implant stability quotient (ISQ), and the reverse torque (RT). The relation between (I), (IT), (ISQ), and (RT) was investigated by correlation analysis. Bone density measured using the probe correlated significantly with actual density, both with (r = 0.764) and without irrigation (r = 0.977). (I) correlated significantly with IT and RT under all irrigation conditions, and with ISQ only without irrigation (r = 0.886). The results suggest that the probe provides actual bone density measurements. They also indicate that (I) measures primary implant stability and is more sensitive to density variations than IT, RT, and ISQ. Results are consistent with those obtained on synthetic blocks but suggest that equine bone blocks may better reproduce the mechanical properties of human cancellous alveolar bone. This should be the subject of additional studies. MDPI 2019-07-01 /pmc/articles/PMC6784737/ /pubmed/31266214 http://dx.doi.org/10.3390/dj7030073 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Orlando, Francesco Arosio, Federico Arosio, Paolo Di Stefano, Danilo Alessio Bone Density and Implant Primary Stability. A Study on Equine Bone Blocks |
title | Bone Density and Implant Primary Stability. A Study on Equine Bone Blocks |
title_full | Bone Density and Implant Primary Stability. A Study on Equine Bone Blocks |
title_fullStr | Bone Density and Implant Primary Stability. A Study on Equine Bone Blocks |
title_full_unstemmed | Bone Density and Implant Primary Stability. A Study on Equine Bone Blocks |
title_short | Bone Density and Implant Primary Stability. A Study on Equine Bone Blocks |
title_sort | bone density and implant primary stability. a study on equine bone blocks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784737/ https://www.ncbi.nlm.nih.gov/pubmed/31266214 http://dx.doi.org/10.3390/dj7030073 |
work_keys_str_mv | AT orlandofrancesco bonedensityandimplantprimarystabilityastudyonequineboneblocks AT arosiofederico bonedensityandimplantprimarystabilityastudyonequineboneblocks AT arosiopaolo bonedensityandimplantprimarystabilityastudyonequineboneblocks AT distefanodaniloalessio bonedensityandimplantprimarystabilityastudyonequineboneblocks |