Cargando…
Automated A-line coronary plaque classification of intravascular optical coherence tomography images using handcrafted features and large datasets
We developed machine learning methods to identify fibrolipidic and fibrocalcific A-lines in intravascular optical coherence tomography (IVOCT) images using a comprehensive set of handcrafted features. We incorporated features developed in previous studies (e.g., optical attenuation and A-line peaks)...
Autores principales: | Prabhu, David, Bezerra, Hiram G., Kolluru, Chaitanya, Gharaibeh, Yazan, Mehanna, Emile, Wu, Hao, Wilson, David L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784787/ https://www.ncbi.nlm.nih.gov/pubmed/31586357 http://dx.doi.org/10.1117/1.JBO.24.10.106002 |
Ejemplares similares
-
Deep neural networks for A-line-based plaque classification in coronary intravascular optical coherence tomography images
por: Kolluru, Chaitanya, et al.
Publicado: (2018) -
Fully automated plaque characterization in intravascular OCT images using hybrid convolutional and lumen morphology features
por: Lee, Juhwan, et al.
Publicado: (2020) -
Coronary calcification segmentation in intravascular OCT images using deep learning: application to calcification scoring
por: Gharaibeh, Yazan, et al.
Publicado: (2019) -
Learning With Fewer Images via Image Clustering: Application to Intravascular OCT Image Segmentation
por: KOLLURU, CHAITANYA, et al.
Publicado: (2021) -
Automated analysis of fibrous cap in intravascular optical coherence tomography images of coronary arteries
por: Lee, Juhwan, et al.
Publicado: (2022)