Cargando…
Characterization of the 1S–2S transition in antihydrogen
In 1928, Dirac published an equation(1) that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles—antimatter. The existence of particles of...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784861/ https://www.ncbi.nlm.nih.gov/pubmed/29618820 http://dx.doi.org/10.1038/s41586-018-0017-2 |
_version_ | 1783457815262658560 |
---|---|
author | Ahmadi, M. Alves, B. X. R. Baker, C. J. Bertsche, W. Capra, A. Carruth, C. Cesar, C. L. Charlton, M. Cohen, S. Collister, R. Eriksson, S. Evans, A. Evetts, N. Fajans, J. Friesen, T. Fujiwara, M. C. Gill, D. R. Hangst, J. S. Hardy, W. N. Hayden, M. E. Isaac, C. A. Johnson, M. A. Jones, J. M. Jones, S. A. Jonsell, S. Khramov, A. Knapp, P. Kurchaninov, L. Madsen, N. Maxwell, D. McKenna, J. T. K. Menary, S. Momose, T. Munich, J. J. Olchanski, K. Olin, A. Pusa, P. Rasmussen, C. Ø. Robicheaux, F. Sacramento, R. L. Sameed, M. Sarid, E. Silveira, D. M. Stutter, G. So, C. Tharp, T. D. Thompson, R. I. van der Werf, D. P. Wurtele, J. S. |
author_facet | Ahmadi, M. Alves, B. X. R. Baker, C. J. Bertsche, W. Capra, A. Carruth, C. Cesar, C. L. Charlton, M. Cohen, S. Collister, R. Eriksson, S. Evans, A. Evetts, N. Fajans, J. Friesen, T. Fujiwara, M. C. Gill, D. R. Hangst, J. S. Hardy, W. N. Hayden, M. E. Isaac, C. A. Johnson, M. A. Jones, J. M. Jones, S. A. Jonsell, S. Khramov, A. Knapp, P. Kurchaninov, L. Madsen, N. Maxwell, D. McKenna, J. T. K. Menary, S. Momose, T. Munich, J. J. Olchanski, K. Olin, A. Pusa, P. Rasmussen, C. Ø. Robicheaux, F. Sacramento, R. L. Sameed, M. Sarid, E. Silveira, D. M. Stutter, G. So, C. Tharp, T. D. Thompson, R. I. van der Werf, D. P. Wurtele, J. S. |
author_sort | Ahmadi, M. |
collection | PubMed |
description | In 1928, Dirac published an equation(1) that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles—antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron(2) (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter(3–7), including tests of fundamental symmetries such as charge–parity and charge–parity–time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart—the antihydrogen atom—of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S–2S transition was recently observed(8) in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 × 10(15) hertz. This is consistent with charge–parity–time invariance at a relative precision of 2 × 10(−12)—two orders of magnitude more precise than the previous determination(8)—corresponding to an absolute energy sensitivity of 2 × 10(−20) GeV. |
format | Online Article Text |
id | pubmed-6784861 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-67848612019-10-11 Characterization of the 1S–2S transition in antihydrogen Ahmadi, M. Alves, B. X. R. Baker, C. J. Bertsche, W. Capra, A. Carruth, C. Cesar, C. L. Charlton, M. Cohen, S. Collister, R. Eriksson, S. Evans, A. Evetts, N. Fajans, J. Friesen, T. Fujiwara, M. C. Gill, D. R. Hangst, J. S. Hardy, W. N. Hayden, M. E. Isaac, C. A. Johnson, M. A. Jones, J. M. Jones, S. A. Jonsell, S. Khramov, A. Knapp, P. Kurchaninov, L. Madsen, N. Maxwell, D. McKenna, J. T. K. Menary, S. Momose, T. Munich, J. J. Olchanski, K. Olin, A. Pusa, P. Rasmussen, C. Ø. Robicheaux, F. Sacramento, R. L. Sameed, M. Sarid, E. Silveira, D. M. Stutter, G. So, C. Tharp, T. D. Thompson, R. I. van der Werf, D. P. Wurtele, J. S. Nature Letter In 1928, Dirac published an equation(1) that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles—antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron(2) (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter(3–7), including tests of fundamental symmetries such as charge–parity and charge–parity–time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart—the antihydrogen atom—of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S–2S transition was recently observed(8) in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 × 10(15) hertz. This is consistent with charge–parity–time invariance at a relative precision of 2 × 10(−12)—two orders of magnitude more precise than the previous determination(8)—corresponding to an absolute energy sensitivity of 2 × 10(−20) GeV. Nature Publishing Group UK 2018-04-04 2018 /pmc/articles/PMC6784861/ /pubmed/29618820 http://dx.doi.org/10.1038/s41586-018-0017-2 Text en © Macmillan Publishers Ltd., part of Springer Nature 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Letter Ahmadi, M. Alves, B. X. R. Baker, C. J. Bertsche, W. Capra, A. Carruth, C. Cesar, C. L. Charlton, M. Cohen, S. Collister, R. Eriksson, S. Evans, A. Evetts, N. Fajans, J. Friesen, T. Fujiwara, M. C. Gill, D. R. Hangst, J. S. Hardy, W. N. Hayden, M. E. Isaac, C. A. Johnson, M. A. Jones, J. M. Jones, S. A. Jonsell, S. Khramov, A. Knapp, P. Kurchaninov, L. Madsen, N. Maxwell, D. McKenna, J. T. K. Menary, S. Momose, T. Munich, J. J. Olchanski, K. Olin, A. Pusa, P. Rasmussen, C. Ø. Robicheaux, F. Sacramento, R. L. Sameed, M. Sarid, E. Silveira, D. M. Stutter, G. So, C. Tharp, T. D. Thompson, R. I. van der Werf, D. P. Wurtele, J. S. Characterization of the 1S–2S transition in antihydrogen |
title | Characterization of the 1S–2S transition in antihydrogen |
title_full | Characterization of the 1S–2S transition in antihydrogen |
title_fullStr | Characterization of the 1S–2S transition in antihydrogen |
title_full_unstemmed | Characterization of the 1S–2S transition in antihydrogen |
title_short | Characterization of the 1S–2S transition in antihydrogen |
title_sort | characterization of the 1s–2s transition in antihydrogen |
topic | Letter |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784861/ https://www.ncbi.nlm.nih.gov/pubmed/29618820 http://dx.doi.org/10.1038/s41586-018-0017-2 |
work_keys_str_mv | AT ahmadim characterizationofthe1s2stransitioninantihydrogen AT alvesbxr characterizationofthe1s2stransitioninantihydrogen AT bakercj characterizationofthe1s2stransitioninantihydrogen AT bertschew characterizationofthe1s2stransitioninantihydrogen AT capraa characterizationofthe1s2stransitioninantihydrogen AT carruthc characterizationofthe1s2stransitioninantihydrogen AT cesarcl characterizationofthe1s2stransitioninantihydrogen AT charltonm characterizationofthe1s2stransitioninantihydrogen AT cohens characterizationofthe1s2stransitioninantihydrogen AT collisterr characterizationofthe1s2stransitioninantihydrogen AT erikssons characterizationofthe1s2stransitioninantihydrogen AT evansa characterizationofthe1s2stransitioninantihydrogen AT evettsn characterizationofthe1s2stransitioninantihydrogen AT fajansj characterizationofthe1s2stransitioninantihydrogen AT friesent characterizationofthe1s2stransitioninantihydrogen AT fujiwaramc characterizationofthe1s2stransitioninantihydrogen AT gilldr characterizationofthe1s2stransitioninantihydrogen AT hangstjs characterizationofthe1s2stransitioninantihydrogen AT hardywn characterizationofthe1s2stransitioninantihydrogen AT haydenme characterizationofthe1s2stransitioninantihydrogen AT isaacca characterizationofthe1s2stransitioninantihydrogen AT johnsonma characterizationofthe1s2stransitioninantihydrogen AT jonesjm characterizationofthe1s2stransitioninantihydrogen AT jonessa characterizationofthe1s2stransitioninantihydrogen AT jonsells characterizationofthe1s2stransitioninantihydrogen AT khramova characterizationofthe1s2stransitioninantihydrogen AT knappp characterizationofthe1s2stransitioninantihydrogen AT kurchaninovl characterizationofthe1s2stransitioninantihydrogen AT madsenn characterizationofthe1s2stransitioninantihydrogen AT maxwelld characterizationofthe1s2stransitioninantihydrogen AT mckennajtk characterizationofthe1s2stransitioninantihydrogen AT menarys characterizationofthe1s2stransitioninantihydrogen AT momoset characterizationofthe1s2stransitioninantihydrogen AT munichjj characterizationofthe1s2stransitioninantihydrogen AT olchanskik characterizationofthe1s2stransitioninantihydrogen AT olina characterizationofthe1s2stransitioninantihydrogen AT pusap characterizationofthe1s2stransitioninantihydrogen AT rasmussencø characterizationofthe1s2stransitioninantihydrogen AT robicheauxf characterizationofthe1s2stransitioninantihydrogen AT sacramentorl characterizationofthe1s2stransitioninantihydrogen AT sameedm characterizationofthe1s2stransitioninantihydrogen AT saride characterizationofthe1s2stransitioninantihydrogen AT silveiradm characterizationofthe1s2stransitioninantihydrogen AT stutterg characterizationofthe1s2stransitioninantihydrogen AT soc characterizationofthe1s2stransitioninantihydrogen AT tharptd characterizationofthe1s2stransitioninantihydrogen AT thompsonri characterizationofthe1s2stransitioninantihydrogen AT vanderwerfdp characterizationofthe1s2stransitioninantihydrogen AT wurtelejs characterizationofthe1s2stransitioninantihydrogen |