Cargando…
A dataset of continuous affect annotations and physiological signals for emotion analysis
From a computational viewpoint, emotions continue to be intriguingly hard to understand. In research, a direct and real-time inspection in realistic settings is not possible. Discrete, indirect, post-hoc recordings are therefore the norm. As a result, proper emotion assessment remains a problematic...
Autores principales: | Sharma, Karan, Castellini, Claudio, van den Broek, Egon L., Albu-Schaeffer, Alin, Schwenker, Friedhelm |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6785543/ https://www.ncbi.nlm.nih.gov/pubmed/31597919 http://dx.doi.org/10.1038/s41597-019-0209-0 |
Ejemplares similares
-
A dataset of daily ambulatory psychological and physiological recording for emotion research
por: Shui, Xinyu, et al.
Publicado: (2021) -
A multimodal psychological, physiological and behavioural dataset for human emotions in driving tasks
por: Li, Wenbo, et al.
Publicado: (2022) -
Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables
por: Saganowski, Stanisław, et al.
Publicado: (2022) -
ACO2 clinicobiological dataset with extensive phenotype ontology annotation
por: Guehlouz, Khadidja, et al.
Publicado: (2021) -
An annotated dataset of bioacoustic sensing and features of mosquitoes
por: Vasconcelos, Dinarte, et al.
Publicado: (2020)