Cargando…

Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways

Bleomycin (BLM) is a chemotherapeutic agent which is associated with Idiopathic pulmonary fibrosis (IPF) due to its chronic administration. Hesperidin, a bioflavonoid has been reported to possess antioxidant, anti-inflammatory, wound healing, and antiapoptotic potential. To evaluate the therapeutic...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Zheng, Kandhare, Amit D., Kandhare, Anwesha A., Bodhankar, Subhash L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Leibniz Research Centre for Working Environment and Human Factors 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6785776/
https://www.ncbi.nlm.nih.gov/pubmed/31611754
http://dx.doi.org/10.17179/excli2019-1094
_version_ 1783457956923179008
author Zhou, Zheng
Kandhare, Amit D.
Kandhare, Anwesha A.
Bodhankar, Subhash L.
author_facet Zhou, Zheng
Kandhare, Amit D.
Kandhare, Anwesha A.
Bodhankar, Subhash L.
author_sort Zhou, Zheng
collection PubMed
description Bleomycin (BLM) is a chemotherapeutic agent which is associated with Idiopathic pulmonary fibrosis (IPF) due to its chronic administration. Hesperidin, a bioflavonoid has been reported to possess antioxidant, anti-inflammatory, wound healing, and antiapoptotic potential. To evaluate the therapeutic potential of hesperidin against BLM-induced pulmonary fibrosis and decipher its possible mechanism of action. Intraperitoneal administration of BLM (6 IU/kg) caused induction of IPF in Sprague-Dawley rats. Rats were treated with hesperidin (25, 50, and 100 mg/kg, p.o.) for 28 days, followed by estimation of various parameters in bronchoalveolar lavage fluid (BALF) and lung. Hesperidin (50 and 100 mg/kg) administration significantly ameliorated (p < 0.05) alterations induced by BLM in lung index, percent oxygen saturation, serum ALP and LDH levels, BALF differential cell count, and lung function test. Elevated levels of oxido-nitrosative stress, hydroxyproline, and myeloperoxidase levels in BALF and lung were significantly decreased by hesperidin on day 14. Hesperidin significantly inhibited BLM-induced down-regulated lung Nrf2 and HO-1 as well as up-regulated TNF-α, IL-1β, IL-6, collagen-1, TGF-β, and Smad-3 mRNA expressions. Western blot analysis showed that alteration in lung NF-κB, IκBα, AMPK, and PP2C-α protein expressions were ameliorated by hesperidin on day 28. Furthermore, BLM induced histological and ultrastructural aberrations in the lung which were attenuated by hesperidin treatment. Hesperidin alleviates BLM-induced IPF via inhibition of TGF-β1/Smad3/AMPK and IκBα/NF-κB pathways which in turn ameliorate the modulation of oxido-inflammatory markers (Nrf2 and HO-1) and pro-inflammatory markers (TNF-α, IL-1β, and IL-6) to reduce collagen deposition during pulmonary fibrosis. See also Figure 1(Fig. 1).
format Online
Article
Text
id pubmed-6785776
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Leibniz Research Centre for Working Environment and Human Factors
record_format MEDLINE/PubMed
spelling pubmed-67857762019-10-14 Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways Zhou, Zheng Kandhare, Amit D. Kandhare, Anwesha A. Bodhankar, Subhash L. EXCLI J Original Article Bleomycin (BLM) is a chemotherapeutic agent which is associated with Idiopathic pulmonary fibrosis (IPF) due to its chronic administration. Hesperidin, a bioflavonoid has been reported to possess antioxidant, anti-inflammatory, wound healing, and antiapoptotic potential. To evaluate the therapeutic potential of hesperidin against BLM-induced pulmonary fibrosis and decipher its possible mechanism of action. Intraperitoneal administration of BLM (6 IU/kg) caused induction of IPF in Sprague-Dawley rats. Rats were treated with hesperidin (25, 50, and 100 mg/kg, p.o.) for 28 days, followed by estimation of various parameters in bronchoalveolar lavage fluid (BALF) and lung. Hesperidin (50 and 100 mg/kg) administration significantly ameliorated (p < 0.05) alterations induced by BLM in lung index, percent oxygen saturation, serum ALP and LDH levels, BALF differential cell count, and lung function test. Elevated levels of oxido-nitrosative stress, hydroxyproline, and myeloperoxidase levels in BALF and lung were significantly decreased by hesperidin on day 14. Hesperidin significantly inhibited BLM-induced down-regulated lung Nrf2 and HO-1 as well as up-regulated TNF-α, IL-1β, IL-6, collagen-1, TGF-β, and Smad-3 mRNA expressions. Western blot analysis showed that alteration in lung NF-κB, IκBα, AMPK, and PP2C-α protein expressions were ameliorated by hesperidin on day 28. Furthermore, BLM induced histological and ultrastructural aberrations in the lung which were attenuated by hesperidin treatment. Hesperidin alleviates BLM-induced IPF via inhibition of TGF-β1/Smad3/AMPK and IκBα/NF-κB pathways which in turn ameliorate the modulation of oxido-inflammatory markers (Nrf2 and HO-1) and pro-inflammatory markers (TNF-α, IL-1β, and IL-6) to reduce collagen deposition during pulmonary fibrosis. See also Figure 1(Fig. 1). Leibniz Research Centre for Working Environment and Human Factors 2019-08-29 /pmc/articles/PMC6785776/ /pubmed/31611754 http://dx.doi.org/10.17179/excli2019-1094 Text en Copyright © 2019 Zhou et al. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (http://creativecommons.org/licenses/by/4.0/) You are free to copy, distribute and transmit the work, provided the original author and source are credited.
spellingShingle Original Article
Zhou, Zheng
Kandhare, Amit D.
Kandhare, Anwesha A.
Bodhankar, Subhash L.
Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways
title Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways
title_full Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways
title_fullStr Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways
title_full_unstemmed Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways
title_short Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways
title_sort hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of tgf-beta1/smad3/ampk and ikappabalpha/nf-kappab pathways
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6785776/
https://www.ncbi.nlm.nih.gov/pubmed/31611754
http://dx.doi.org/10.17179/excli2019-1094
work_keys_str_mv AT zhouzheng hesperidinamelioratesbleomycininducedexperimentalpulmonaryfibrosisviainhibitionoftgfbeta1smad3ampkandikappabalphanfkappabpathways
AT kandhareamitd hesperidinamelioratesbleomycininducedexperimentalpulmonaryfibrosisviainhibitionoftgfbeta1smad3ampkandikappabalphanfkappabpathways
AT kandhareanweshaa hesperidinamelioratesbleomycininducedexperimentalpulmonaryfibrosisviainhibitionoftgfbeta1smad3ampkandikappabalphanfkappabpathways
AT bodhankarsubhashl hesperidinamelioratesbleomycininducedexperimentalpulmonaryfibrosisviainhibitionoftgfbeta1smad3ampkandikappabalphanfkappabpathways