Cargando…

Efficacy of insecticides used in indoor residual spraying for malaria control: an experimental trial on various surfaces in a “test house”

BACKGROUND: Malaria is a public health problem in the Brazilian Amazon region. In integrated vector management for malaria (anopheline) control, indoor residual spraying (IRS) represents one of the main tools in the basic strategy applied in the Amazonian states. It is essential to understand the re...

Descripción completa

Detalles Bibliográficos
Autores principales: Corrêa, Ana Paula S. A., Galardo, Allan K. R., Lima, Luana A., Câmara, Daniel C. P., Müller, Josiane N., Barroso, Jéssica Fernanda S., Lapouble, Oscar M. M., Rodovalho, Cynara M., Ribeiro, Kaio Augusto N., Lima, José Bento P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6785876/
https://www.ncbi.nlm.nih.gov/pubmed/31601226
http://dx.doi.org/10.1186/s12936-019-2969-6
Descripción
Sumario:BACKGROUND: Malaria is a public health problem in the Brazilian Amazon region. In integrated vector management for malaria (anopheline) control, indoor residual spraying (IRS) represents one of the main tools in the basic strategy applied in the Amazonian states. It is essential to understand the residual efficacy of insecticides on different surfaces to determine spray cycles, ensure their rational use, and prevent wastage. This study aimed to evaluate the residual efficacy of six insecticide formulations used in the National Malaria Control Programme on four different types of walls in a field simulation at a “test house”. METHODS: The tests were performed as a field-simulating evaluation at a “test house” built in the municipality of Macapá. Six insecticide formulations comprising four pyrethroids, a carbamate, and an organophosphate were used, and evaluated when applied on different wall surfaces: painted wood, unpainted wood, plastered cement, and unplastered cement. The insecticides were applied to the interior walls of the “test house” by a trained technician. RESULTS: In the bioassays performed with pyrethroids, deltamethrin water-dispersible granules (WG) performed particularly well, presenting residual bioefficacy of 8 months on both wood surfaces after the IRS, whereas alpha-cypermethrin suspension concentrate (SC) and etofenprox wettable powder (WP) demonstrated residual bioefficacy of 4 months on at least one of the wood surfaces; however, the pyrethroid lambda-cyhalothrin WP showed a low residual bioefficacy (< 3 months) on all tested surfaces, demonstrating its inefficiency for areas with a long transmission cycle of malaria. For the carbamate-bendiocarb WP, residual bioefficacy for 3 months was achieved only on wood surfaces. In general, the organophosphate pirimifos-methyl capsule suspension (CS) demonstrated the best result, with a mortality rate < 80% over a period of 6 months on all surfaces tested. CONCLUSION: Insecticide efficiency varies among different types of surface; therefore, a “test house” is a valuable evaluation tool. This work highlights the usefulness of associating the residual efficacy of insecticides on the surfaces commonly found in houses in endemic areas, together with knowledge about the transmission cycle duration of the transmission cycle and the insecticide susceptibility of the vector. This association helps in the decision-making for the malaria control intervention regarding.