Cargando…
Neurological symptoms associated with oil spill response exposures: Results from the Deepwater Horizon Oil Spill Coast Guard Cohort Study
INTRODUCTION: The Deepwater Horizon (DWH) oil spill was the largest marine oil spill in U.S. history, involving the response of tens of thousands clean-up workers. Over 8500 United States Coast Guard personnel were deployed in response to the spill. Little is understood about the acute neurological...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786260/ https://www.ncbi.nlm.nih.gov/pubmed/31382236 http://dx.doi.org/10.1016/j.envint.2019.104963 |
Sumario: | INTRODUCTION: The Deepwater Horizon (DWH) oil spill was the largest marine oil spill in U.S. history, involving the response of tens of thousands clean-up workers. Over 8500 United States Coast Guard personnel were deployed in response to the spill. Little is understood about the acute neurological effects of oil spill clean-up-related exposures. Given the large number of people involved in large oil spill clean-ups, study of these effects is warranted. METHODS: We utilized exposure, health, and lifestyle data from a post-deployment survey administered to Coast Guard responders to the DWH oil spill. Crude oil exposure was assessed via self-reported inhalation and skin contact metrics, categorized by frequency of self-reported exposure to crude oil during deployment (never, rarely, sometimes, most/all of the time). Combined exposure to crude oil and oil dispersant was also evaluated. Adjusted log binomial regressions were used to calculate prevalence ratios (PRs) and 95% confidence intervals (CI), investigating the associations between oil spill exposures and neurological symptoms during deployment. Stratified analyses investigated potential effect modification by sex, exhaust fume exposure, personal protective equipment (PPE) use, and deployment duration and timing. RESULTS: Increasing frequency of crude oil exposure via inhalation was associated with increased likelihood of headaches (PR(most/all vs. never) = 1.80), lightheadedness (PR(most/all vs. never) = 3.36), difficulty concentrating (PR(most/all vs. never) = 1.72), numbness/tingling sensation (PR(most/all vs. never) = 3.32), blurred vision (PR(most/all vs.) never = 2.87), and memory loss/confusion (PR(most/all vs. never) = 2.03), with significant tests for trend. Similar results were found for crude oil exposure via skin contact. Exposure to both oil and oil dispersants yielded associations that were appreciably greater in magnitude than for oil alone for all neurological symptoms. Sensitivity analyses excluding responders in the highest environmental heat categories and responders with relevant pre-existing conditions indicated robustness of these results. Stratified analyses indicated possible effect modification by sex, PPE use, and heat exposure. CONCLUSIONS: This study provides evidence of a cross sectional association between crude oil exposures and acute neurological symptoms in a sample of U.S. Coast Guard responders. Additionally, it suggests that exposure to both crude oil and oil dispersant may result in stronger associations and that heat may interact synergistically with oil exposures resulting in more acute neurological symptoms. Future investigations are needed to confirm these findings. |
---|