Cargando…
A feature selection strategy for gene expression time series experiments with hidden Markov models
Studies conducted in time series could be far more informative than those that only capture a specific moment in time. However, when it comes to transcriptomic data, time points are sparse creating the need for a constant search for methods capable of extracting information out of experiments of thi...
Autores principales: | Cárdenas-Ovando, Roberto A., Fernández-Figueroa, Edith A., Rueda-Zárate, Héctor A., Noguez, Julieta, Rangel-Escareño, Claudia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786538/ https://www.ncbi.nlm.nih.gov/pubmed/31600242 http://dx.doi.org/10.1371/journal.pone.0223183 |
Ejemplares similares
-
A computational toxicogenomics approach identifies a list of highly hepatotoxic compounds from a large microarray database
por: Rueda-Zárate, Héctor A., et al.
Publicado: (2017) -
Hidden Markov models for time series: an introduction using R
por: Zucchini, Walter, et al.
Publicado: (2016) -
Clustering Multivariate Time Series Using Hidden Markov Models
por: Ghassempour, Shima, et al.
Publicado: (2014) -
Quantile hidden semi-Markov models for multivariate time series
por: Merlo, Luca, et al.
Publicado: (2022) -
A Hidden Markov Ensemble Algorithm Design for Time Series Analysis
por: Lin, Ting, et al.
Publicado: (2022)