Cargando…
Neural minimization methods (NMM) for solving variable order fractional delay differential equations (FDDEs) with simulated annealing (SA)
To enrich any model and its dynamics introduction of delay is useful, that models a precise description of real-life phenomena. Differential equations in which current time derivatives count on the solution and its derivatives at a prior time are known as delay differential equations (DDEs). In this...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786650/ https://www.ncbi.nlm.nih.gov/pubmed/31600273 http://dx.doi.org/10.1371/journal.pone.0223476 |
_version_ | 1783458108661563392 |
---|---|
author | Shaikh, Amber Jamal, M. Asif Hanif, Fozia Khan, M. Sadiq Ali Inayatullah, Syed |
author_facet | Shaikh, Amber Jamal, M. Asif Hanif, Fozia Khan, M. Sadiq Ali Inayatullah, Syed |
author_sort | Shaikh, Amber |
collection | PubMed |
description | To enrich any model and its dynamics introduction of delay is useful, that models a precise description of real-life phenomena. Differential equations in which current time derivatives count on the solution and its derivatives at a prior time are known as delay differential equations (DDEs). In this study, we are introducing new techniques for finding the numerical solution of fractional delay differential equations (FDDEs) based on the application of neural minimization (NM) by utilizing Chebyshev simulated annealing neural network (ChSANN) and Legendre simulated annealing neural network (LSANN). The main purpose of using Chebyshev and Legendre polynomials, along with simulated annealing (SA), is to reduce mean square error (MSE) that leads to more accurate numerical approximations. This study provides the application of ChSANN and LSANN for solving DDEs and FDDEs. Proposed schemes can be effortlessly executed by using Mathematica or MATLAB software to get explicit solutions. Computational outcomes are depicted, for various numerical experiments, numerically and graphically with error analysis to demonstrate the accuracy and efficiency of the methods. |
format | Online Article Text |
id | pubmed-6786650 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-67866502019-10-19 Neural minimization methods (NMM) for solving variable order fractional delay differential equations (FDDEs) with simulated annealing (SA) Shaikh, Amber Jamal, M. Asif Hanif, Fozia Khan, M. Sadiq Ali Inayatullah, Syed PLoS One Research Article To enrich any model and its dynamics introduction of delay is useful, that models a precise description of real-life phenomena. Differential equations in which current time derivatives count on the solution and its derivatives at a prior time are known as delay differential equations (DDEs). In this study, we are introducing new techniques for finding the numerical solution of fractional delay differential equations (FDDEs) based on the application of neural minimization (NM) by utilizing Chebyshev simulated annealing neural network (ChSANN) and Legendre simulated annealing neural network (LSANN). The main purpose of using Chebyshev and Legendre polynomials, along with simulated annealing (SA), is to reduce mean square error (MSE) that leads to more accurate numerical approximations. This study provides the application of ChSANN and LSANN for solving DDEs and FDDEs. Proposed schemes can be effortlessly executed by using Mathematica or MATLAB software to get explicit solutions. Computational outcomes are depicted, for various numerical experiments, numerically and graphically with error analysis to demonstrate the accuracy and efficiency of the methods. Public Library of Science 2019-10-10 /pmc/articles/PMC6786650/ /pubmed/31600273 http://dx.doi.org/10.1371/journal.pone.0223476 Text en © 2019 Shaikh et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Shaikh, Amber Jamal, M. Asif Hanif, Fozia Khan, M. Sadiq Ali Inayatullah, Syed Neural minimization methods (NMM) for solving variable order fractional delay differential equations (FDDEs) with simulated annealing (SA) |
title | Neural minimization methods (NMM) for solving variable order fractional delay differential equations (FDDEs) with simulated annealing (SA) |
title_full | Neural minimization methods (NMM) for solving variable order fractional delay differential equations (FDDEs) with simulated annealing (SA) |
title_fullStr | Neural minimization methods (NMM) for solving variable order fractional delay differential equations (FDDEs) with simulated annealing (SA) |
title_full_unstemmed | Neural minimization methods (NMM) for solving variable order fractional delay differential equations (FDDEs) with simulated annealing (SA) |
title_short | Neural minimization methods (NMM) for solving variable order fractional delay differential equations (FDDEs) with simulated annealing (SA) |
title_sort | neural minimization methods (nmm) for solving variable order fractional delay differential equations (fddes) with simulated annealing (sa) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786650/ https://www.ncbi.nlm.nih.gov/pubmed/31600273 http://dx.doi.org/10.1371/journal.pone.0223476 |
work_keys_str_mv | AT shaikhamber neuralminimizationmethodsnmmforsolvingvariableorderfractionaldelaydifferentialequationsfddeswithsimulatedannealingsa AT jamalmasif neuralminimizationmethodsnmmforsolvingvariableorderfractionaldelaydifferentialequationsfddeswithsimulatedannealingsa AT haniffozia neuralminimizationmethodsnmmforsolvingvariableorderfractionaldelaydifferentialequationsfddeswithsimulatedannealingsa AT khanmsadiqali neuralminimizationmethodsnmmforsolvingvariableorderfractionaldelaydifferentialequationsfddeswithsimulatedannealingsa AT inayatullahsyed neuralminimizationmethodsnmmforsolvingvariableorderfractionaldelaydifferentialequationsfddeswithsimulatedannealingsa |