Cargando…
Neural minimization methods (NMM) for solving variable order fractional delay differential equations (FDDEs) with simulated annealing (SA)
To enrich any model and its dynamics introduction of delay is useful, that models a precise description of real-life phenomena. Differential equations in which current time derivatives count on the solution and its derivatives at a prior time are known as delay differential equations (DDEs). In this...
Autores principales: | Shaikh, Amber, Jamal, M. Asif, Hanif, Fozia, Khan, M. Sadiq Ali, Inayatullah, Syed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786650/ https://www.ncbi.nlm.nih.gov/pubmed/31600273 http://dx.doi.org/10.1371/journal.pone.0223476 |
Ejemplares similares
-
A Comparison of HWRF, ARW and NMM Models in Hurricane Katrina (2005) Simulation
por: Dodla, Venkata B., et al.
Publicado: (2011) -
G-quadruplex formation in double strand DNA probed by NMM and CV fluorescence
por: Kreig, Alex, et al.
Publicado: (2015) -
Nonstandard finite difference method for solving complex-order fractional Burgers’ equations()
por: Sweilam, N.H., et al.
Publicado: (2020) -
An Analytical Technique, Based on Natural Transform to Solve Fractional-Order Parabolic Equations
por: Agarwal, Ravi P., et al.
Publicado: (2021) -
Solving problems with quantum annealing
por: Thom, Murray
Publicado: (2021)