Cargando…
LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes
Cancer driver genes, i.e., oncogenes and tumor suppressor genes, are involved in the acquisition of important functions in tumors, providing a selective growth advantage, allowing uncontrolled proliferation and avoiding apoptosis. It is therefore important to identify these driver genes, both for th...
Autores principales: | Collier, Olivier, Stoven, Véronique, Vert, Jean-Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786659/ https://www.ncbi.nlm.nih.gov/pubmed/31568528 http://dx.doi.org/10.1371/journal.pcbi.1007381 |
Ejemplares similares
-
ProDiGe: Prioritization Of Disease Genes with multitask machine learning from positive and unlabeled examples
por: Mordelet, Fantine, et al.
Publicado: (2011) -
A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction
por: Hoffmann, Brice, et al.
Publicado: (2010) -
Virtual screening of GPCRs: An in silico chemogenomics approach
por: Jacob, Laurent, et al.
Publicado: (2008) -
EARN: an ensemble machine learning algorithm to predict driver genes in metastatic breast cancer
por: Mirsadeghi, Leila, et al.
Publicado: (2021) -
A Two-Level Transfer Learning Algorithm for Evolutionary Multitasking
por: Ma, Xiaoliang, et al.
Publicado: (2020)