_version_ 1783458159155740672
author Ahmadi, M.
Alves, B. X. R.
Baker, C. J.
Bertsche, W.
Capra, A.
Carruth, C.
Cesar, C. L.
Charlton, M.
Cohen, S.
Collister, R.
Eriksson, S.
Evans, A.
Evetts, N.
Fajans, J.
Friesen, T.
Fujiwara, M. C.
Gill, D. R.
Hangst, J. S.
Hardy, W. N.
Hayden, M. E.
Hunter, E. D.
Isaac, C. A.
Johnson, M. A.
Jones, J. M.
Jones, S. A.
Jonsell, S.
Khramov, A.
Knapp, P.
Kurchaninov, L.
Madsen, N.
Maxwell, D.
McKenna, J. T. K.
Menary, S.
Michan, J. M.
Momose, T.
Munich, J. J.
Olchanski, K.
Olin, A.
Pusa, P.
Rasmussen, C. Ø.
Robicheaux, F.
Sacramento, R. L.
Sameed, M.
Sarid, E.
Silveira, D. M.
Starko, D. M.
Stutter, G.
So, C.
Tharp, T. D.
Thompson, R. I.
van der Werf, D. P.
Wurtele, J. S.
author_facet Ahmadi, M.
Alves, B. X. R.
Baker, C. J.
Bertsche, W.
Capra, A.
Carruth, C.
Cesar, C. L.
Charlton, M.
Cohen, S.
Collister, R.
Eriksson, S.
Evans, A.
Evetts, N.
Fajans, J.
Friesen, T.
Fujiwara, M. C.
Gill, D. R.
Hangst, J. S.
Hardy, W. N.
Hayden, M. E.
Hunter, E. D.
Isaac, C. A.
Johnson, M. A.
Jones, J. M.
Jones, S. A.
Jonsell, S.
Khramov, A.
Knapp, P.
Kurchaninov, L.
Madsen, N.
Maxwell, D.
McKenna, J. T. K.
Menary, S.
Michan, J. M.
Momose, T.
Munich, J. J.
Olchanski, K.
Olin, A.
Pusa, P.
Rasmussen, C. Ø.
Robicheaux, F.
Sacramento, R. L.
Sameed, M.
Sarid, E.
Silveira, D. M.
Starko, D. M.
Stutter, G.
So, C.
Tharp, T. D.
Thompson, R. I.
van der Werf, D. P.
Wurtele, J. S.
author_sort Ahmadi, M.
collection PubMed
description In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum(1,2). The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Since then, studies involving the Lyman-α line—the 1S–2P transition at a wavelength of 121.6 nanometres—have played an important part in physics and astronomy, as one of the most fundamental atomic transitions in the Universe. For example, this transition has long been used by astronomers studying the intergalactic medium and testing cosmological models via the so-called ‘Lyman-α forest’(3) of absorption lines at different redshifts. Here we report the observation of the Lyman-α transition in the antihydrogen atom, the antimatter counterpart of hydrogen. Using narrow-line-width, nanosecond-pulsed laser radiation, the 1S–2P transition was excited in magnetically trapped antihydrogen. The transition frequency at a field of 1.033 tesla was determined to be 2,466,051.7 ± 0.12 gigahertz (1σ uncertainty) and agrees with the prediction for hydrogen to a precision of 5 × 10(−8). Comparisons of the properties of antihydrogen with those of its well-studied matter equivalent allow precision tests of fundamental symmetries between matter and antimatter. Alongside the ground-state hyperfine(4,5) and 1S–2S transitions(6,7) recently observed in antihydrogen, the Lyman-α transition will permit laser cooling of antihydrogen(8,9), thus providing a cold and dense sample of anti-atoms for precision spectroscopy and gravity measurements(10). In addition to the observation of this fundamental transition, this work represents both a decisive technological step towards laser cooling of antihydrogen, and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum.
format Online
Article
Text
id pubmed-6786973
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-67869732019-10-15 Observation of the 1S–2P Lyman-α transition in antihydrogen Ahmadi, M. Alves, B. X. R. Baker, C. J. Bertsche, W. Capra, A. Carruth, C. Cesar, C. L. Charlton, M. Cohen, S. Collister, R. Eriksson, S. Evans, A. Evetts, N. Fajans, J. Friesen, T. Fujiwara, M. C. Gill, D. R. Hangst, J. S. Hardy, W. N. Hayden, M. E. Hunter, E. D. Isaac, C. A. Johnson, M. A. Jones, J. M. Jones, S. A. Jonsell, S. Khramov, A. Knapp, P. Kurchaninov, L. Madsen, N. Maxwell, D. McKenna, J. T. K. Menary, S. Michan, J. M. Momose, T. Munich, J. J. Olchanski, K. Olin, A. Pusa, P. Rasmussen, C. Ø. Robicheaux, F. Sacramento, R. L. Sameed, M. Sarid, E. Silveira, D. M. Starko, D. M. Stutter, G. So, C. Tharp, T. D. Thompson, R. I. van der Werf, D. P. Wurtele, J. S. Nature Letter In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum(1,2). The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Since then, studies involving the Lyman-α line—the 1S–2P transition at a wavelength of 121.6 nanometres—have played an important part in physics and astronomy, as one of the most fundamental atomic transitions in the Universe. For example, this transition has long been used by astronomers studying the intergalactic medium and testing cosmological models via the so-called ‘Lyman-α forest’(3) of absorption lines at different redshifts. Here we report the observation of the Lyman-α transition in the antihydrogen atom, the antimatter counterpart of hydrogen. Using narrow-line-width, nanosecond-pulsed laser radiation, the 1S–2P transition was excited in magnetically trapped antihydrogen. The transition frequency at a field of 1.033 tesla was determined to be 2,466,051.7 ± 0.12 gigahertz (1σ uncertainty) and agrees with the prediction for hydrogen to a precision of 5 × 10(−8). Comparisons of the properties of antihydrogen with those of its well-studied matter equivalent allow precision tests of fundamental symmetries between matter and antimatter. Alongside the ground-state hyperfine(4,5) and 1S–2S transitions(6,7) recently observed in antihydrogen, the Lyman-α transition will permit laser cooling of antihydrogen(8,9), thus providing a cold and dense sample of anti-atoms for precision spectroscopy and gravity measurements(10). In addition to the observation of this fundamental transition, this work represents both a decisive technological step towards laser cooling of antihydrogen, and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum. Nature Publishing Group UK 2018-08-22 2018 /pmc/articles/PMC6786973/ /pubmed/30135588 http://dx.doi.org/10.1038/s41586-018-0435-1 Text en © Springer Nature Limited 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Letter
Ahmadi, M.
Alves, B. X. R.
Baker, C. J.
Bertsche, W.
Capra, A.
Carruth, C.
Cesar, C. L.
Charlton, M.
Cohen, S.
Collister, R.
Eriksson, S.
Evans, A.
Evetts, N.
Fajans, J.
Friesen, T.
Fujiwara, M. C.
Gill, D. R.
Hangst, J. S.
Hardy, W. N.
Hayden, M. E.
Hunter, E. D.
Isaac, C. A.
Johnson, M. A.
Jones, J. M.
Jones, S. A.
Jonsell, S.
Khramov, A.
Knapp, P.
Kurchaninov, L.
Madsen, N.
Maxwell, D.
McKenna, J. T. K.
Menary, S.
Michan, J. M.
Momose, T.
Munich, J. J.
Olchanski, K.
Olin, A.
Pusa, P.
Rasmussen, C. Ø.
Robicheaux, F.
Sacramento, R. L.
Sameed, M.
Sarid, E.
Silveira, D. M.
Starko, D. M.
Stutter, G.
So, C.
Tharp, T. D.
Thompson, R. I.
van der Werf, D. P.
Wurtele, J. S.
Observation of the 1S–2P Lyman-α transition in antihydrogen
title Observation of the 1S–2P Lyman-α transition in antihydrogen
title_full Observation of the 1S–2P Lyman-α transition in antihydrogen
title_fullStr Observation of the 1S–2P Lyman-α transition in antihydrogen
title_full_unstemmed Observation of the 1S–2P Lyman-α transition in antihydrogen
title_short Observation of the 1S–2P Lyman-α transition in antihydrogen
title_sort observation of the 1s–2p lyman-α transition in antihydrogen
topic Letter
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786973/
https://www.ncbi.nlm.nih.gov/pubmed/30135588
http://dx.doi.org/10.1038/s41586-018-0435-1
work_keys_str_mv AT ahmadim observationofthe1s2plymanatransitioninantihydrogen
AT alvesbxr observationofthe1s2plymanatransitioninantihydrogen
AT bakercj observationofthe1s2plymanatransitioninantihydrogen
AT bertschew observationofthe1s2plymanatransitioninantihydrogen
AT capraa observationofthe1s2plymanatransitioninantihydrogen
AT carruthc observationofthe1s2plymanatransitioninantihydrogen
AT cesarcl observationofthe1s2plymanatransitioninantihydrogen
AT charltonm observationofthe1s2plymanatransitioninantihydrogen
AT cohens observationofthe1s2plymanatransitioninantihydrogen
AT collisterr observationofthe1s2plymanatransitioninantihydrogen
AT erikssons observationofthe1s2plymanatransitioninantihydrogen
AT evansa observationofthe1s2plymanatransitioninantihydrogen
AT evettsn observationofthe1s2plymanatransitioninantihydrogen
AT fajansj observationofthe1s2plymanatransitioninantihydrogen
AT friesent observationofthe1s2plymanatransitioninantihydrogen
AT fujiwaramc observationofthe1s2plymanatransitioninantihydrogen
AT gilldr observationofthe1s2plymanatransitioninantihydrogen
AT hangstjs observationofthe1s2plymanatransitioninantihydrogen
AT hardywn observationofthe1s2plymanatransitioninantihydrogen
AT haydenme observationofthe1s2plymanatransitioninantihydrogen
AT huntered observationofthe1s2plymanatransitioninantihydrogen
AT isaacca observationofthe1s2plymanatransitioninantihydrogen
AT johnsonma observationofthe1s2plymanatransitioninantihydrogen
AT jonesjm observationofthe1s2plymanatransitioninantihydrogen
AT jonessa observationofthe1s2plymanatransitioninantihydrogen
AT jonsells observationofthe1s2plymanatransitioninantihydrogen
AT khramova observationofthe1s2plymanatransitioninantihydrogen
AT knappp observationofthe1s2plymanatransitioninantihydrogen
AT kurchaninovl observationofthe1s2plymanatransitioninantihydrogen
AT madsenn observationofthe1s2plymanatransitioninantihydrogen
AT maxwelld observationofthe1s2plymanatransitioninantihydrogen
AT mckennajtk observationofthe1s2plymanatransitioninantihydrogen
AT menarys observationofthe1s2plymanatransitioninantihydrogen
AT michanjm observationofthe1s2plymanatransitioninantihydrogen
AT momoset observationofthe1s2plymanatransitioninantihydrogen
AT munichjj observationofthe1s2plymanatransitioninantihydrogen
AT olchanskik observationofthe1s2plymanatransitioninantihydrogen
AT olina observationofthe1s2plymanatransitioninantihydrogen
AT pusap observationofthe1s2plymanatransitioninantihydrogen
AT rasmussencø observationofthe1s2plymanatransitioninantihydrogen
AT robicheauxf observationofthe1s2plymanatransitioninantihydrogen
AT sacramentorl observationofthe1s2plymanatransitioninantihydrogen
AT sameedm observationofthe1s2plymanatransitioninantihydrogen
AT saride observationofthe1s2plymanatransitioninantihydrogen
AT silveiradm observationofthe1s2plymanatransitioninantihydrogen
AT starkodm observationofthe1s2plymanatransitioninantihydrogen
AT stutterg observationofthe1s2plymanatransitioninantihydrogen
AT soc observationofthe1s2plymanatransitioninantihydrogen
AT tharptd observationofthe1s2plymanatransitioninantihydrogen
AT thompsonri observationofthe1s2plymanatransitioninantihydrogen
AT vanderwerfdp observationofthe1s2plymanatransitioninantihydrogen
AT wurtelejs observationofthe1s2plymanatransitioninantihydrogen