Cargando…
Observation of the 1S–2P Lyman-α transition in antihydrogen
In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum(1,2). The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale....
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786973/ https://www.ncbi.nlm.nih.gov/pubmed/30135588 http://dx.doi.org/10.1038/s41586-018-0435-1 |
_version_ | 1783458159155740672 |
---|---|
author | Ahmadi, M. Alves, B. X. R. Baker, C. J. Bertsche, W. Capra, A. Carruth, C. Cesar, C. L. Charlton, M. Cohen, S. Collister, R. Eriksson, S. Evans, A. Evetts, N. Fajans, J. Friesen, T. Fujiwara, M. C. Gill, D. R. Hangst, J. S. Hardy, W. N. Hayden, M. E. Hunter, E. D. Isaac, C. A. Johnson, M. A. Jones, J. M. Jones, S. A. Jonsell, S. Khramov, A. Knapp, P. Kurchaninov, L. Madsen, N. Maxwell, D. McKenna, J. T. K. Menary, S. Michan, J. M. Momose, T. Munich, J. J. Olchanski, K. Olin, A. Pusa, P. Rasmussen, C. Ø. Robicheaux, F. Sacramento, R. L. Sameed, M. Sarid, E. Silveira, D. M. Starko, D. M. Stutter, G. So, C. Tharp, T. D. Thompson, R. I. van der Werf, D. P. Wurtele, J. S. |
author_facet | Ahmadi, M. Alves, B. X. R. Baker, C. J. Bertsche, W. Capra, A. Carruth, C. Cesar, C. L. Charlton, M. Cohen, S. Collister, R. Eriksson, S. Evans, A. Evetts, N. Fajans, J. Friesen, T. Fujiwara, M. C. Gill, D. R. Hangst, J. S. Hardy, W. N. Hayden, M. E. Hunter, E. D. Isaac, C. A. Johnson, M. A. Jones, J. M. Jones, S. A. Jonsell, S. Khramov, A. Knapp, P. Kurchaninov, L. Madsen, N. Maxwell, D. McKenna, J. T. K. Menary, S. Michan, J. M. Momose, T. Munich, J. J. Olchanski, K. Olin, A. Pusa, P. Rasmussen, C. Ø. Robicheaux, F. Sacramento, R. L. Sameed, M. Sarid, E. Silveira, D. M. Starko, D. M. Stutter, G. So, C. Tharp, T. D. Thompson, R. I. van der Werf, D. P. Wurtele, J. S. |
author_sort | Ahmadi, M. |
collection | PubMed |
description | In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum(1,2). The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Since then, studies involving the Lyman-α line—the 1S–2P transition at a wavelength of 121.6 nanometres—have played an important part in physics and astronomy, as one of the most fundamental atomic transitions in the Universe. For example, this transition has long been used by astronomers studying the intergalactic medium and testing cosmological models via the so-called ‘Lyman-α forest’(3) of absorption lines at different redshifts. Here we report the observation of the Lyman-α transition in the antihydrogen atom, the antimatter counterpart of hydrogen. Using narrow-line-width, nanosecond-pulsed laser radiation, the 1S–2P transition was excited in magnetically trapped antihydrogen. The transition frequency at a field of 1.033 tesla was determined to be 2,466,051.7 ± 0.12 gigahertz (1σ uncertainty) and agrees with the prediction for hydrogen to a precision of 5 × 10(−8). Comparisons of the properties of antihydrogen with those of its well-studied matter equivalent allow precision tests of fundamental symmetries between matter and antimatter. Alongside the ground-state hyperfine(4,5) and 1S–2S transitions(6,7) recently observed in antihydrogen, the Lyman-α transition will permit laser cooling of antihydrogen(8,9), thus providing a cold and dense sample of anti-atoms for precision spectroscopy and gravity measurements(10). In addition to the observation of this fundamental transition, this work represents both a decisive technological step towards laser cooling of antihydrogen, and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum. |
format | Online Article Text |
id | pubmed-6786973 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-67869732019-10-15 Observation of the 1S–2P Lyman-α transition in antihydrogen Ahmadi, M. Alves, B. X. R. Baker, C. J. Bertsche, W. Capra, A. Carruth, C. Cesar, C. L. Charlton, M. Cohen, S. Collister, R. Eriksson, S. Evans, A. Evetts, N. Fajans, J. Friesen, T. Fujiwara, M. C. Gill, D. R. Hangst, J. S. Hardy, W. N. Hayden, M. E. Hunter, E. D. Isaac, C. A. Johnson, M. A. Jones, J. M. Jones, S. A. Jonsell, S. Khramov, A. Knapp, P. Kurchaninov, L. Madsen, N. Maxwell, D. McKenna, J. T. K. Menary, S. Michan, J. M. Momose, T. Munich, J. J. Olchanski, K. Olin, A. Pusa, P. Rasmussen, C. Ø. Robicheaux, F. Sacramento, R. L. Sameed, M. Sarid, E. Silveira, D. M. Starko, D. M. Stutter, G. So, C. Tharp, T. D. Thompson, R. I. van der Werf, D. P. Wurtele, J. S. Nature Letter In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum(1,2). The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Since then, studies involving the Lyman-α line—the 1S–2P transition at a wavelength of 121.6 nanometres—have played an important part in physics and astronomy, as one of the most fundamental atomic transitions in the Universe. For example, this transition has long been used by astronomers studying the intergalactic medium and testing cosmological models via the so-called ‘Lyman-α forest’(3) of absorption lines at different redshifts. Here we report the observation of the Lyman-α transition in the antihydrogen atom, the antimatter counterpart of hydrogen. Using narrow-line-width, nanosecond-pulsed laser radiation, the 1S–2P transition was excited in magnetically trapped antihydrogen. The transition frequency at a field of 1.033 tesla was determined to be 2,466,051.7 ± 0.12 gigahertz (1σ uncertainty) and agrees with the prediction for hydrogen to a precision of 5 × 10(−8). Comparisons of the properties of antihydrogen with those of its well-studied matter equivalent allow precision tests of fundamental symmetries between matter and antimatter. Alongside the ground-state hyperfine(4,5) and 1S–2S transitions(6,7) recently observed in antihydrogen, the Lyman-α transition will permit laser cooling of antihydrogen(8,9), thus providing a cold and dense sample of anti-atoms for precision spectroscopy and gravity measurements(10). In addition to the observation of this fundamental transition, this work represents both a decisive technological step towards laser cooling of antihydrogen, and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum. Nature Publishing Group UK 2018-08-22 2018 /pmc/articles/PMC6786973/ /pubmed/30135588 http://dx.doi.org/10.1038/s41586-018-0435-1 Text en © Springer Nature Limited 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Letter Ahmadi, M. Alves, B. X. R. Baker, C. J. Bertsche, W. Capra, A. Carruth, C. Cesar, C. L. Charlton, M. Cohen, S. Collister, R. Eriksson, S. Evans, A. Evetts, N. Fajans, J. Friesen, T. Fujiwara, M. C. Gill, D. R. Hangst, J. S. Hardy, W. N. Hayden, M. E. Hunter, E. D. Isaac, C. A. Johnson, M. A. Jones, J. M. Jones, S. A. Jonsell, S. Khramov, A. Knapp, P. Kurchaninov, L. Madsen, N. Maxwell, D. McKenna, J. T. K. Menary, S. Michan, J. M. Momose, T. Munich, J. J. Olchanski, K. Olin, A. Pusa, P. Rasmussen, C. Ø. Robicheaux, F. Sacramento, R. L. Sameed, M. Sarid, E. Silveira, D. M. Starko, D. M. Stutter, G. So, C. Tharp, T. D. Thompson, R. I. van der Werf, D. P. Wurtele, J. S. Observation of the 1S–2P Lyman-α transition in antihydrogen |
title | Observation of the 1S–2P Lyman-α transition in antihydrogen |
title_full | Observation of the 1S–2P Lyman-α transition in antihydrogen |
title_fullStr | Observation of the 1S–2P Lyman-α transition in antihydrogen |
title_full_unstemmed | Observation of the 1S–2P Lyman-α transition in antihydrogen |
title_short | Observation of the 1S–2P Lyman-α transition in antihydrogen |
title_sort | observation of the 1s–2p lyman-α transition in antihydrogen |
topic | Letter |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786973/ https://www.ncbi.nlm.nih.gov/pubmed/30135588 http://dx.doi.org/10.1038/s41586-018-0435-1 |
work_keys_str_mv | AT ahmadim observationofthe1s2plymanatransitioninantihydrogen AT alvesbxr observationofthe1s2plymanatransitioninantihydrogen AT bakercj observationofthe1s2plymanatransitioninantihydrogen AT bertschew observationofthe1s2plymanatransitioninantihydrogen AT capraa observationofthe1s2plymanatransitioninantihydrogen AT carruthc observationofthe1s2plymanatransitioninantihydrogen AT cesarcl observationofthe1s2plymanatransitioninantihydrogen AT charltonm observationofthe1s2plymanatransitioninantihydrogen AT cohens observationofthe1s2plymanatransitioninantihydrogen AT collisterr observationofthe1s2plymanatransitioninantihydrogen AT erikssons observationofthe1s2plymanatransitioninantihydrogen AT evansa observationofthe1s2plymanatransitioninantihydrogen AT evettsn observationofthe1s2plymanatransitioninantihydrogen AT fajansj observationofthe1s2plymanatransitioninantihydrogen AT friesent observationofthe1s2plymanatransitioninantihydrogen AT fujiwaramc observationofthe1s2plymanatransitioninantihydrogen AT gilldr observationofthe1s2plymanatransitioninantihydrogen AT hangstjs observationofthe1s2plymanatransitioninantihydrogen AT hardywn observationofthe1s2plymanatransitioninantihydrogen AT haydenme observationofthe1s2plymanatransitioninantihydrogen AT huntered observationofthe1s2plymanatransitioninantihydrogen AT isaacca observationofthe1s2plymanatransitioninantihydrogen AT johnsonma observationofthe1s2plymanatransitioninantihydrogen AT jonesjm observationofthe1s2plymanatransitioninantihydrogen AT jonessa observationofthe1s2plymanatransitioninantihydrogen AT jonsells observationofthe1s2plymanatransitioninantihydrogen AT khramova observationofthe1s2plymanatransitioninantihydrogen AT knappp observationofthe1s2plymanatransitioninantihydrogen AT kurchaninovl observationofthe1s2plymanatransitioninantihydrogen AT madsenn observationofthe1s2plymanatransitioninantihydrogen AT maxwelld observationofthe1s2plymanatransitioninantihydrogen AT mckennajtk observationofthe1s2plymanatransitioninantihydrogen AT menarys observationofthe1s2plymanatransitioninantihydrogen AT michanjm observationofthe1s2plymanatransitioninantihydrogen AT momoset observationofthe1s2plymanatransitioninantihydrogen AT munichjj observationofthe1s2plymanatransitioninantihydrogen AT olchanskik observationofthe1s2plymanatransitioninantihydrogen AT olina observationofthe1s2plymanatransitioninantihydrogen AT pusap observationofthe1s2plymanatransitioninantihydrogen AT rasmussencø observationofthe1s2plymanatransitioninantihydrogen AT robicheauxf observationofthe1s2plymanatransitioninantihydrogen AT sacramentorl observationofthe1s2plymanatransitioninantihydrogen AT sameedm observationofthe1s2plymanatransitioninantihydrogen AT saride observationofthe1s2plymanatransitioninantihydrogen AT silveiradm observationofthe1s2plymanatransitioninantihydrogen AT starkodm observationofthe1s2plymanatransitioninantihydrogen AT stutterg observationofthe1s2plymanatransitioninantihydrogen AT soc observationofthe1s2plymanatransitioninantihydrogen AT tharptd observationofthe1s2plymanatransitioninantihydrogen AT thompsonri observationofthe1s2plymanatransitioninantihydrogen AT vanderwerfdp observationofthe1s2plymanatransitioninantihydrogen AT wurtelejs observationofthe1s2plymanatransitioninantihydrogen |