Cargando…
Interactive spatial scale effects on species distribution modeling: The case of the giant panda
Research has shown that varying spatial scale through the selection of the total extent of investigation and the grain size of environmental predictor variables has effects on species distribution model (SDM) results and accuracy, but there has been minimal investigation into the interactive effects...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787011/ https://www.ncbi.nlm.nih.gov/pubmed/31601927 http://dx.doi.org/10.1038/s41598-019-50953-z |
Sumario: | Research has shown that varying spatial scale through the selection of the total extent of investigation and the grain size of environmental predictor variables has effects on species distribution model (SDM) results and accuracy, but there has been minimal investigation into the interactive effects of extent and grain. To do this, we used a consistently sampled range-wide dataset of giant panda occurrence across southwest China and modeled their habitat and distribution at 4 extents and 7 grain sizes. We found that increasing grain size reduced model accuracy at the smallest extent, but that increasing extent negated this effect. Increasing extent also generally increased model accuracy, but the models built at the second-largest (mountain range) extent were more accurate than those built at the largest, geographic range-wide extent. When predicting habitat suitability in the smallest nested extents (50 km(2)), we found that the models built at the next-largest extent (500 km(2)) were more accurate than the smallest-extent models but that further increases in extent resulted in large decreases in accuracy. Overall, this study highlights the impacts of the selection of spatial scale when evaluating species’ habitat and distributions, and we suggest more explicit investigations of scale effects in future modeling efforts. |
---|