Cargando…
Long noncoding RNA LINC02582 acts downstream of miR-200c to promote radioresistance through CHK1 in breast cancer cells
Radiotherapy is essential to treat breast cancer and microRNA (miRNA) miR-200c is considered as a radiosensitizer of breast cancer. However, the molecular mechanisms by which miR-200c regulates radiosensitivity remain largely unknown. In the present study, we showed that induction of miR-200c led to...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787210/ https://www.ncbi.nlm.nih.gov/pubmed/31601781 http://dx.doi.org/10.1038/s41419-019-1996-0 |
Sumario: | Radiotherapy is essential to treat breast cancer and microRNA (miRNA) miR-200c is considered as a radiosensitizer of breast cancer. However, the molecular mechanisms by which miR-200c regulates radiosensitivity remain largely unknown. In the present study, we showed that induction of miR-200c led to widespread alteration in long noncoding RNA (lncRNA) expression in breast cancer cells. We identified lncRNA LINC02582 as a target of miR-200c. Inhibition of LINC02582 expression increased radiosensitvity, while overexpression of LINC02582 promoted radioresistance. Mechanistically, LINC02582 interacts with deubiquitinating enzyme ubiquitin specific peptidase 7 (USP7) to deubiquitinate and stabilize checkpoint kinase 1 (CHK1), a critical effector kinase in DNA damage response, thus promoting radioresistance. Furthermore, we detected an inverse correlation between the expression of miR-200c vs. LINC02582 and CHK1 in breast cancer samples. These findings identified LINC02582 as a downstream target of miR-200c linking miR-200c to CHK1, in which miR-200c increases radiosensitivity by downregulation of CHK1. |
---|