Cargando…
Comparative Analysis of Midgut Regeneration Capacity and Resistance to Oral Infection in Three Disease-Vector Mosquitoes
Mosquitoes acquire the pathogens they transmit through ingestion, and the insects’ gut constitutes the first line of defense against invading pathogens. Indeed the gut epithelium acts as a physical barrier, activates local antimicrobial peptides production and triggers the systemic immune response....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787257/ https://www.ncbi.nlm.nih.gov/pubmed/31601867 http://dx.doi.org/10.1038/s41598-019-50994-4 |
Sumario: | Mosquitoes acquire the pathogens they transmit through ingestion, and the insects’ gut constitutes the first line of defense against invading pathogens. Indeed the gut epithelium acts as a physical barrier, activates local antimicrobial peptides production and triggers the systemic immune response. Consequently, gut epithelium is constantly confronted to stress and often suffers cellular damage. We have previously shown that regenerative cells are present in the guts of adult Aedes albopictus, and that chemical damage or bacterial infection leads to the proliferation of these regenerative cells in the midgut. In this study, we extended the analysis of gut cells response to stress to two other important disease vector mosquitoes: Culex pipiens and Anopheles gambiae. We fed mosquitoes on sucrose solutions or on sucrose supplemented with pathogenic bacteria or with damage-inducing chemicals. We also assayed the survival of mosquitoes following the ingestion of pathogenic bacteria. We found that in adult C. pipiens, dividing cells exist in the digestive tract and that these cells proliferate in the midgut after bacterial or chemical damage, similarly to what we previously observed in A. albopictus. In sharp contrast, we did not detect any mitotic cell in the midguts of A. gambiae mosquitoes, neither in normal situation nor after the induction of gut damage. In agreement with this observation, A. gambiae mosquitoes were more sensitive to oral bacterial infections compared to A. albopictus and C. pipiens. This work provides evidence that major differences in gut physiological responses exist between different mosquitoes. The presence of regenerative cells in the mosquito guts and their ability to multiply after gut damage affect the mosquito survival to oral infections, and is also likely to affect its vectorial capacity. |
---|