Cargando…

Effects of substrate color on intraspecific body color variation in the toad‐headed lizard, Phrynocephalus versicolor

Diversity in animal coloration is generally associated with adaptation to their living habitats, ranging from territorial display and sexual selection to predation or predation avoidance, and thermoregulation. However, the mechanism underlying color variation in toad‐headed Phrynocephalus lizards re...

Descripción completa

Detalles Bibliográficos
Autores principales: Tong, Haojie, Li, Jiasheng, Wo, Yubin, Shao, Gang, Zhao, Wei, Aguilar‐Gómez, Diana, Jin, Yuanting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787858/
https://www.ncbi.nlm.nih.gov/pubmed/31624549
http://dx.doi.org/10.1002/ece3.5545
Descripción
Sumario:Diversity in animal coloration is generally associated with adaptation to their living habitats, ranging from territorial display and sexual selection to predation or predation avoidance, and thermoregulation. However, the mechanism underlying color variation in toad‐headed Phrynocephalus lizards remains poorly understood. In this study, we investigated the population color variation of Phrynocephalus versicolor. We found that lizards distributed in dark substrate have darker dorsal coloration (melanic lizards) than populations living in light substrates. This characteristic may improve their camouflage effectiveness. A reciprocal substrate translocation experiment was conducted to clarify the potential role of morphological adaptation and physiological plasticity of this variation. Spectrometry technology and digital photography were used to quantify the color variation of the above‐mentioned melanic and nonmelanic P. versicolor populations and their native substrate. Additionally, substrate color preference in both populations was investigated with choice experiments. Our results indicate that the melanic and nonmelanic populations with remarkable habitat color difference were significantly different on measured reflectance, luminance, and RGB values. Twenty‐four hours, 30 days, and 60 days of substrate translocation treatment had little effects on dorsal color change. We also found that melanic lizards choose to live in dark substrate, while nonmelanic lizards have no preference for substrate color. In conclusion, our results support that the dorsal coloration of P. versicolor, associated with substrate color, is likely a morphological adaptation rather than phenotypic plasticity.