Cargando…
The influence of ecological and life history factors on ectothermic temperature–size responses: Analysis of three Lycaenidae butterflies (Lepidoptera)
Body size has been shown to decrease with increasing temperature in many species, prompting the suggestion that it is a universal ecological response. However, species with complex life cycles, such as holometabolous insects, may have correspondingly complicated temperature–size responses. Recent re...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787867/ https://www.ncbi.nlm.nih.gov/pubmed/31632644 http://dx.doi.org/10.1002/ece3.5550 |
_version_ | 1783458373839093760 |
---|---|
author | Wilson, Rebecca J. Brooks, Stephen J. Fenberg, Phillip B. |
author_facet | Wilson, Rebecca J. Brooks, Stephen J. Fenberg, Phillip B. |
author_sort | Wilson, Rebecca J. |
collection | PubMed |
description | Body size has been shown to decrease with increasing temperature in many species, prompting the suggestion that it is a universal ecological response. However, species with complex life cycles, such as holometabolous insects, may have correspondingly complicated temperature–size responses. Recent research suggests that life history and ecological traits may be important for determining the direction and strength of temperature–size responses. Yet, these factors are rarely included in analyses. Here, we aim to determine whether the size of the bivoltine butterfly, Polyommatus bellargus, and the univoltine butterflies, Plebejus argus and Polyommatus coridon, change in response to temperature and whether these responses differ between the sexes, and for P. bellargus, between generations. Forewing length was measured using digital specimens from the Natural History Museum, London (NHM), from one locality in the UK per species. The data were initially compared to annual and seasonal temperature values, without consideration of life history factors. Sex and generation of the individuals and mean monthly temperatures, which cover the growing period for each species, were then included in analyses. When compared to annual or seasonal temperatures only, size was not related to temperature for P. bellargus and P. argus, but there was a negative relationship between size and temperature for P. coridon. When sex, generation, and monthly temperatures were included, male adult size decreased as temperature increased in the early larval stages, and increased as temperature increased during the late larval stages. Results were similar but less consistent for females, while second generation P. bellargus showed no temperature–size response. In P. coridon, size decreased as temperature increased during the pupal stage. These results highlight the importance of including life history factors, sex, and monthly temperature data when studying temperature–size responses for species with complex life cycles. |
format | Online Article Text |
id | pubmed-6787867 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67878672019-10-18 The influence of ecological and life history factors on ectothermic temperature–size responses: Analysis of three Lycaenidae butterflies (Lepidoptera) Wilson, Rebecca J. Brooks, Stephen J. Fenberg, Phillip B. Ecol Evol Original Research Body size has been shown to decrease with increasing temperature in many species, prompting the suggestion that it is a universal ecological response. However, species with complex life cycles, such as holometabolous insects, may have correspondingly complicated temperature–size responses. Recent research suggests that life history and ecological traits may be important for determining the direction and strength of temperature–size responses. Yet, these factors are rarely included in analyses. Here, we aim to determine whether the size of the bivoltine butterfly, Polyommatus bellargus, and the univoltine butterflies, Plebejus argus and Polyommatus coridon, change in response to temperature and whether these responses differ between the sexes, and for P. bellargus, between generations. Forewing length was measured using digital specimens from the Natural History Museum, London (NHM), from one locality in the UK per species. The data were initially compared to annual and seasonal temperature values, without consideration of life history factors. Sex and generation of the individuals and mean monthly temperatures, which cover the growing period for each species, were then included in analyses. When compared to annual or seasonal temperatures only, size was not related to temperature for P. bellargus and P. argus, but there was a negative relationship between size and temperature for P. coridon. When sex, generation, and monthly temperatures were included, male adult size decreased as temperature increased in the early larval stages, and increased as temperature increased during the late larval stages. Results were similar but less consistent for females, while second generation P. bellargus showed no temperature–size response. In P. coridon, size decreased as temperature increased during the pupal stage. These results highlight the importance of including life history factors, sex, and monthly temperature data when studying temperature–size responses for species with complex life cycles. John Wiley and Sons Inc. 2019-08-14 /pmc/articles/PMC6787867/ /pubmed/31632644 http://dx.doi.org/10.1002/ece3.5550 Text en © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Wilson, Rebecca J. Brooks, Stephen J. Fenberg, Phillip B. The influence of ecological and life history factors on ectothermic temperature–size responses: Analysis of three Lycaenidae butterflies (Lepidoptera) |
title | The influence of ecological and life history factors on ectothermic temperature–size responses: Analysis of three Lycaenidae butterflies (Lepidoptera) |
title_full | The influence of ecological and life history factors on ectothermic temperature–size responses: Analysis of three Lycaenidae butterflies (Lepidoptera) |
title_fullStr | The influence of ecological and life history factors on ectothermic temperature–size responses: Analysis of three Lycaenidae butterflies (Lepidoptera) |
title_full_unstemmed | The influence of ecological and life history factors on ectothermic temperature–size responses: Analysis of three Lycaenidae butterflies (Lepidoptera) |
title_short | The influence of ecological and life history factors on ectothermic temperature–size responses: Analysis of three Lycaenidae butterflies (Lepidoptera) |
title_sort | influence of ecological and life history factors on ectothermic temperature–size responses: analysis of three lycaenidae butterflies (lepidoptera) |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787867/ https://www.ncbi.nlm.nih.gov/pubmed/31632644 http://dx.doi.org/10.1002/ece3.5550 |
work_keys_str_mv | AT wilsonrebeccaj theinfluenceofecologicalandlifehistoryfactorsonectothermictemperaturesizeresponsesanalysisofthreelycaenidaebutterflieslepidoptera AT brooksstephenj theinfluenceofecologicalandlifehistoryfactorsonectothermictemperaturesizeresponsesanalysisofthreelycaenidaebutterflieslepidoptera AT fenbergphillipb theinfluenceofecologicalandlifehistoryfactorsonectothermictemperaturesizeresponsesanalysisofthreelycaenidaebutterflieslepidoptera AT wilsonrebeccaj influenceofecologicalandlifehistoryfactorsonectothermictemperaturesizeresponsesanalysisofthreelycaenidaebutterflieslepidoptera AT brooksstephenj influenceofecologicalandlifehistoryfactorsonectothermictemperaturesizeresponsesanalysisofthreelycaenidaebutterflieslepidoptera AT fenbergphillipb influenceofecologicalandlifehistoryfactorsonectothermictemperaturesizeresponsesanalysisofthreelycaenidaebutterflieslepidoptera |