Cargando…
One Step Synthesis of a Gold/Ordered Mesoporous Carbon Composite Using a Hard Template Method for Electrocatalytic Oxidation of Methanol and Colorimetric Determination of Glutathione
[Image: see text] Ordered mesoporous carbon-supported gold nanoparticles (Au/OMC) have been fabricated in one step through a hard template method using gold nanoparticle-intercalated mesoporous silica (GMS) to explore two different catalytic properties, for example, electrocatalytic oxidation of met...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787891/ https://www.ncbi.nlm.nih.gov/pubmed/31616814 http://dx.doi.org/10.1021/acsomega.9b01880 |
_version_ | 1783458379963826176 |
---|---|
author | Banerjee, Rumeli Ghosh, Debojit Satra, Jit Ghosh, Abhisek Brata Singha, Debdas Nandi, Mahasweta Biswas, Papu |
author_facet | Banerjee, Rumeli Ghosh, Debojit Satra, Jit Ghosh, Abhisek Brata Singha, Debdas Nandi, Mahasweta Biswas, Papu |
author_sort | Banerjee, Rumeli |
collection | PubMed |
description | [Image: see text] Ordered mesoporous carbon-supported gold nanoparticles (Au/OMC) have been fabricated in one step through a hard template method using gold nanoparticle-intercalated mesoporous silica (GMS) to explore two different catalytic properties, for example, electrocatalytic oxidation of methanol and colorimetric determination of glutathione (GSH). The catalytically inert but conducting nature of mesoporous carbon (OMC) and promising catalytic activity of gold nanoparticles (AuNPs) has inspired us to synthesize Au/OMC. The as-prepared Au/OMC catalyst was characterized by powder X-ray diffraction, N(2) adsorption–desorption, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray analysis-elemental mapping, and X-ray photoelectron spectroscopy. The characterization results indicate that AuNPs are uniformly distributed on the surface of OMC. The conducting-OMC framework with a high surface area of Au/OMC provides superior transport of electrons through the porous surface of carbon matrix and resulted in its high efficiency and stability as an electrocatalyst for the oxidation of methanol in comparison to CMK-3, SBA-15, and GMS in alkaline medium. The efficiency of Au/OMC toward methanol oxidation in alkaline medium is much higher in comparison to that in acidic medium. The lower value of I(f)/I(b) in the acidic medium in comparison to that in the alkaline medium clearly indicates that the oxidation process with Au/OMC as a catalyst is much more superior in alkaline medium with better tolerance toward the accumulation of intermediate CO species on the active surface area. Furthermore, the Au/OMC catalyst is successfully utilized for the detection and quantification of GSH spectrophotometrically with a limit of detection value of 0.604 nM. |
format | Online Article Text |
id | pubmed-6787891 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-67878912019-10-15 One Step Synthesis of a Gold/Ordered Mesoporous Carbon Composite Using a Hard Template Method for Electrocatalytic Oxidation of Methanol and Colorimetric Determination of Glutathione Banerjee, Rumeli Ghosh, Debojit Satra, Jit Ghosh, Abhisek Brata Singha, Debdas Nandi, Mahasweta Biswas, Papu ACS Omega [Image: see text] Ordered mesoporous carbon-supported gold nanoparticles (Au/OMC) have been fabricated in one step through a hard template method using gold nanoparticle-intercalated mesoporous silica (GMS) to explore two different catalytic properties, for example, electrocatalytic oxidation of methanol and colorimetric determination of glutathione (GSH). The catalytically inert but conducting nature of mesoporous carbon (OMC) and promising catalytic activity of gold nanoparticles (AuNPs) has inspired us to synthesize Au/OMC. The as-prepared Au/OMC catalyst was characterized by powder X-ray diffraction, N(2) adsorption–desorption, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray analysis-elemental mapping, and X-ray photoelectron spectroscopy. The characterization results indicate that AuNPs are uniformly distributed on the surface of OMC. The conducting-OMC framework with a high surface area of Au/OMC provides superior transport of electrons through the porous surface of carbon matrix and resulted in its high efficiency and stability as an electrocatalyst for the oxidation of methanol in comparison to CMK-3, SBA-15, and GMS in alkaline medium. The efficiency of Au/OMC toward methanol oxidation in alkaline medium is much higher in comparison to that in acidic medium. The lower value of I(f)/I(b) in the acidic medium in comparison to that in the alkaline medium clearly indicates that the oxidation process with Au/OMC as a catalyst is much more superior in alkaline medium with better tolerance toward the accumulation of intermediate CO species on the active surface area. Furthermore, the Au/OMC catalyst is successfully utilized for the detection and quantification of GSH spectrophotometrically with a limit of detection value of 0.604 nM. American Chemical Society 2019-09-26 /pmc/articles/PMC6787891/ /pubmed/31616814 http://dx.doi.org/10.1021/acsomega.9b01880 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Banerjee, Rumeli Ghosh, Debojit Satra, Jit Ghosh, Abhisek Brata Singha, Debdas Nandi, Mahasweta Biswas, Papu One Step Synthesis of a Gold/Ordered Mesoporous Carbon Composite Using a Hard Template Method for Electrocatalytic Oxidation of Methanol and Colorimetric Determination of Glutathione |
title | One Step Synthesis of a Gold/Ordered Mesoporous Carbon
Composite Using a Hard Template Method for Electrocatalytic Oxidation
of Methanol and Colorimetric Determination of Glutathione |
title_full | One Step Synthesis of a Gold/Ordered Mesoporous Carbon
Composite Using a Hard Template Method for Electrocatalytic Oxidation
of Methanol and Colorimetric Determination of Glutathione |
title_fullStr | One Step Synthesis of a Gold/Ordered Mesoporous Carbon
Composite Using a Hard Template Method for Electrocatalytic Oxidation
of Methanol and Colorimetric Determination of Glutathione |
title_full_unstemmed | One Step Synthesis of a Gold/Ordered Mesoporous Carbon
Composite Using a Hard Template Method for Electrocatalytic Oxidation
of Methanol and Colorimetric Determination of Glutathione |
title_short | One Step Synthesis of a Gold/Ordered Mesoporous Carbon
Composite Using a Hard Template Method for Electrocatalytic Oxidation
of Methanol and Colorimetric Determination of Glutathione |
title_sort | one step synthesis of a gold/ordered mesoporous carbon
composite using a hard template method for electrocatalytic oxidation
of methanol and colorimetric determination of glutathione |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787891/ https://www.ncbi.nlm.nih.gov/pubmed/31616814 http://dx.doi.org/10.1021/acsomega.9b01880 |
work_keys_str_mv | AT banerjeerumeli onestepsynthesisofagoldorderedmesoporouscarboncompositeusingahardtemplatemethodforelectrocatalyticoxidationofmethanolandcolorimetricdeterminationofglutathione AT ghoshdebojit onestepsynthesisofagoldorderedmesoporouscarboncompositeusingahardtemplatemethodforelectrocatalyticoxidationofmethanolandcolorimetricdeterminationofglutathione AT satrajit onestepsynthesisofagoldorderedmesoporouscarboncompositeusingahardtemplatemethodforelectrocatalyticoxidationofmethanolandcolorimetricdeterminationofglutathione AT ghoshabhisekbrata onestepsynthesisofagoldorderedmesoporouscarboncompositeusingahardtemplatemethodforelectrocatalyticoxidationofmethanolandcolorimetricdeterminationofglutathione AT singhadebdas onestepsynthesisofagoldorderedmesoporouscarboncompositeusingahardtemplatemethodforelectrocatalyticoxidationofmethanolandcolorimetricdeterminationofglutathione AT nandimahasweta onestepsynthesisofagoldorderedmesoporouscarboncompositeusingahardtemplatemethodforelectrocatalyticoxidationofmethanolandcolorimetricdeterminationofglutathione AT biswaspapu onestepsynthesisofagoldorderedmesoporouscarboncompositeusingahardtemplatemethodforelectrocatalyticoxidationofmethanolandcolorimetricdeterminationofglutathione |