Cargando…
A novel deep learning architecture outperforming ‘off-the-shelf’ transfer learning and feature-based methods in the automated assessment of mammographic breast density
Potentially suspicious breast neoplasms could be masked by high tissue density, thus increasing the probability of a false-negative diagnosis. Furthermore, differentiating breast tissue type enables patient pre-screening stratification and risk assessment. In this study, we propose and evaluate adva...
Autores principales: | Trivizakis, Eleftherios, Ioannidis, Georgios S., Melissianos, Vasileios D., Papadakis, Georgios Z., Tsatsakis, Aristidis, Spandidos, Demetrios A., Marias, Kostas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787954/ https://www.ncbi.nlm.nih.gov/pubmed/31545461 http://dx.doi.org/10.3892/or.2019.7312 |
Ejemplares similares
-
Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review)
por: Kontopodis, Eleftherios E., et al.
Publicado: (2021) -
Advancing COVID-19 differentiation with a robust preprocessing and integration of multi-institutional open-repository computer tomography datasets for deep learning analysis
por: Trivizakis, Eleftherios, et al.
Publicado: (2020) -
Artificial intelligence radiogenomics for advancing precision and effectiveness in oncologic care (Review)
por: Trivizakis, Eleftherios, et al.
Publicado: (2020) -
Deep learning opens new horizons in personalized medicine
por: Papadakis, Georgios Z., et al.
Publicado: (2019) -
Interpretable artificial intelligence framework for COVID-19 screening on chest X-rays
por: Tsiknakis, Nikos, et al.
Publicado: (2020)