Cargando…
Dietary intakes and biomarker patterns of folate, vitamin B(6), and vitamin B(12) can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1
BACKGROUND: B vitamins in the one-carbon metabolism pathway (folate, vitamin B(6), and vitamin B(12)) have been implicated in DNA methylation, and their deficiency may contribute to cognitive decline through increased homocysteine (Hcy) levels and subsequent oxidative damage. The aim of this study w...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787977/ https://www.ncbi.nlm.nih.gov/pubmed/31601260 http://dx.doi.org/10.1186/s13148-019-0741-y |
_version_ | 1783458395821441024 |
---|---|
author | An, Yu Feng, Lingli Zhang, Xiaona Wang, Ying Wang, Yushan Tao, Lingwei Qin, Zhongsheng Xiao, Rong |
author_facet | An, Yu Feng, Lingli Zhang, Xiaona Wang, Ying Wang, Yushan Tao, Lingwei Qin, Zhongsheng Xiao, Rong |
author_sort | An, Yu |
collection | PubMed |
description | BACKGROUND: B vitamins in the one-carbon metabolism pathway (folate, vitamin B(6), and vitamin B(12)) have been implicated in DNA methylation, and their deficiency may contribute to cognitive decline through increased homocysteine (Hcy) levels and subsequent oxidative damage. The aim of this study was to investigate whether B vitamin deficiency and increased Hcy could interact with DNA methylation of oxidative-related genes and exacerbate cognitive impairment. METHODS: Participants were selected from a large cohort study entitled the Effects and Mechanism Investigation of Cholesterol and Oxysterol on Alzheimer’s disease (EMCOA) study. We included 2533 participants who completed a selection of comprehensive cognitive tests and a semiquantitative food frequency questionnaire (FFQ) and were followed for an average of 2.3 years. The longitudinal effects of B vitamin intake on cognitive decline were examined using linear mixed-effect models. Seven mild cognitive impairment (MCI) patients, in the predementia stage of Alzheimer’s disease (AD), and fivev healthy controls were selected for the discovery of genome-wide differentially methylated CpG sites. Candidate oxidative stress-related genes significantly correlated with serum levels of B vitamins were selected for validation in 102 MCI patients and 68 controls. The correlations between DNA methylation levels and serum concentrations of B vitamins and oxidative biomarkers were analyzed with Spearman’s correlation. The interactive effects of DNA methylation and B vitamins on cognitive performance were further evaluated by multiple linear regression. RESULTS: In the prospective analysis, inadequate dietary intake of vitamin B(12) was significantly associated with accelerated cognitive decline, whereas adequate folate, vitamin B(6), and vitamin B(12) intakes were significantly associated with better cognitive reserve. In the case-control analysis, the DNA methylation levels of NUDT15 and TXNRD1 were examined, and significantly hypermethylated sites were identified in MCI patients. Significant correlations of hypermethylated sites with serum levels of folate, homocysteine (Hcy), and oxidative biomarkers were observed, and interactive effects of B vitamins and hypermethylated sites were significantly associated with cognitive performance. CONCLUSION: Adequate dietary folate at baseline predicted a better cognitive reserve, while decreased serum levels of B vitamins may contribute to cognitive impairment by affecting methylation levels of specific redox-related genes. TRIAL REGISTRATION: EMCOA, ChiCTR-OOC-17011882, Registered 5th, July 2017-Retrospectively registered, http://www.medresman.org/uc/project/projectedit.aspx?proj=2610 GRAPHICAL ABSTRACT: [Image: see text] |
format | Online Article Text |
id | pubmed-6787977 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-67879772019-10-18 Dietary intakes and biomarker patterns of folate, vitamin B(6), and vitamin B(12) can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1 An, Yu Feng, Lingli Zhang, Xiaona Wang, Ying Wang, Yushan Tao, Lingwei Qin, Zhongsheng Xiao, Rong Clin Epigenetics Research BACKGROUND: B vitamins in the one-carbon metabolism pathway (folate, vitamin B(6), and vitamin B(12)) have been implicated in DNA methylation, and their deficiency may contribute to cognitive decline through increased homocysteine (Hcy) levels and subsequent oxidative damage. The aim of this study was to investigate whether B vitamin deficiency and increased Hcy could interact with DNA methylation of oxidative-related genes and exacerbate cognitive impairment. METHODS: Participants were selected from a large cohort study entitled the Effects and Mechanism Investigation of Cholesterol and Oxysterol on Alzheimer’s disease (EMCOA) study. We included 2533 participants who completed a selection of comprehensive cognitive tests and a semiquantitative food frequency questionnaire (FFQ) and were followed for an average of 2.3 years. The longitudinal effects of B vitamin intake on cognitive decline were examined using linear mixed-effect models. Seven mild cognitive impairment (MCI) patients, in the predementia stage of Alzheimer’s disease (AD), and fivev healthy controls were selected for the discovery of genome-wide differentially methylated CpG sites. Candidate oxidative stress-related genes significantly correlated with serum levels of B vitamins were selected for validation in 102 MCI patients and 68 controls. The correlations between DNA methylation levels and serum concentrations of B vitamins and oxidative biomarkers were analyzed with Spearman’s correlation. The interactive effects of DNA methylation and B vitamins on cognitive performance were further evaluated by multiple linear regression. RESULTS: In the prospective analysis, inadequate dietary intake of vitamin B(12) was significantly associated with accelerated cognitive decline, whereas adequate folate, vitamin B(6), and vitamin B(12) intakes were significantly associated with better cognitive reserve. In the case-control analysis, the DNA methylation levels of NUDT15 and TXNRD1 were examined, and significantly hypermethylated sites were identified in MCI patients. Significant correlations of hypermethylated sites with serum levels of folate, homocysteine (Hcy), and oxidative biomarkers were observed, and interactive effects of B vitamins and hypermethylated sites were significantly associated with cognitive performance. CONCLUSION: Adequate dietary folate at baseline predicted a better cognitive reserve, while decreased serum levels of B vitamins may contribute to cognitive impairment by affecting methylation levels of specific redox-related genes. TRIAL REGISTRATION: EMCOA, ChiCTR-OOC-17011882, Registered 5th, July 2017-Retrospectively registered, http://www.medresman.org/uc/project/projectedit.aspx?proj=2610 GRAPHICAL ABSTRACT: [Image: see text] BioMed Central 2019-10-11 /pmc/articles/PMC6787977/ /pubmed/31601260 http://dx.doi.org/10.1186/s13148-019-0741-y Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research An, Yu Feng, Lingli Zhang, Xiaona Wang, Ying Wang, Yushan Tao, Lingwei Qin, Zhongsheng Xiao, Rong Dietary intakes and biomarker patterns of folate, vitamin B(6), and vitamin B(12) can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1 |
title | Dietary intakes and biomarker patterns of folate, vitamin B(6), and vitamin B(12) can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1 |
title_full | Dietary intakes and biomarker patterns of folate, vitamin B(6), and vitamin B(12) can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1 |
title_fullStr | Dietary intakes and biomarker patterns of folate, vitamin B(6), and vitamin B(12) can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1 |
title_full_unstemmed | Dietary intakes and biomarker patterns of folate, vitamin B(6), and vitamin B(12) can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1 |
title_short | Dietary intakes and biomarker patterns of folate, vitamin B(6), and vitamin B(12) can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1 |
title_sort | dietary intakes and biomarker patterns of folate, vitamin b(6), and vitamin b(12) can be associated with cognitive impairment by hypermethylation of redox-related genes nudt15 and txnrd1 |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787977/ https://www.ncbi.nlm.nih.gov/pubmed/31601260 http://dx.doi.org/10.1186/s13148-019-0741-y |
work_keys_str_mv | AT anyu dietaryintakesandbiomarkerpatternsoffolatevitaminb6andvitaminb12canbeassociatedwithcognitiveimpairmentbyhypermethylationofredoxrelatedgenesnudt15andtxnrd1 AT fenglingli dietaryintakesandbiomarkerpatternsoffolatevitaminb6andvitaminb12canbeassociatedwithcognitiveimpairmentbyhypermethylationofredoxrelatedgenesnudt15andtxnrd1 AT zhangxiaona dietaryintakesandbiomarkerpatternsoffolatevitaminb6andvitaminb12canbeassociatedwithcognitiveimpairmentbyhypermethylationofredoxrelatedgenesnudt15andtxnrd1 AT wangying dietaryintakesandbiomarkerpatternsoffolatevitaminb6andvitaminb12canbeassociatedwithcognitiveimpairmentbyhypermethylationofredoxrelatedgenesnudt15andtxnrd1 AT wangyushan dietaryintakesandbiomarkerpatternsoffolatevitaminb6andvitaminb12canbeassociatedwithcognitiveimpairmentbyhypermethylationofredoxrelatedgenesnudt15andtxnrd1 AT taolingwei dietaryintakesandbiomarkerpatternsoffolatevitaminb6andvitaminb12canbeassociatedwithcognitiveimpairmentbyhypermethylationofredoxrelatedgenesnudt15andtxnrd1 AT qinzhongsheng dietaryintakesandbiomarkerpatternsoffolatevitaminb6andvitaminb12canbeassociatedwithcognitiveimpairmentbyhypermethylationofredoxrelatedgenesnudt15andtxnrd1 AT xiaorong dietaryintakesandbiomarkerpatternsoffolatevitaminb6andvitaminb12canbeassociatedwithcognitiveimpairmentbyhypermethylationofredoxrelatedgenesnudt15andtxnrd1 |