Cargando…
An application of machine learning with feature selection to improve diagnosis and classification of neurodegenerative disorders
BACKGROUND: The analysis of health and medical data is crucial for improving the diagnosis precision, treatments and prevention. In this field, machine learning techniques play a key role. However, the amount of health data acquired from digital machines has high dimensionality and not all data acqu...
Autores principales: | Álvarez, Josefa Díaz, Matias-Guiu, Jordi A., Cabrera-Martín, María Nieves, Risco-Martín, José L., Ayala, José L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6788103/ https://www.ncbi.nlm.nih.gov/pubmed/31601182 http://dx.doi.org/10.1186/s12859-019-3027-7 |
Ejemplares similares
-
GA-MADRID: design and validation of a machine learning tool for the diagnosis of Alzheimer’s disease and frontotemporal dementia using genetic algorithms
por: García-Gutierrez, Fernando, et al.
Publicado: (2022) -
Clustering Analysis of FDG-PET Imaging in Primary Progressive Aphasia
por: Matias-Guiu, Jordi A., et al.
Publicado: (2018) -
Genetic Algorithms for Optimized Diagnosis of Alzheimer’s Disease and Frontotemporal Dementia Using Fluorodeoxyglucose Positron Emission Tomography Imaging
por: Díaz-Álvarez, Josefa, et al.
Publicado: (2022) -
Application of Machine Learning to Electroencephalography for the Diagnosis of Primary Progressive Aphasia: A Pilot Study
por: Moral-Rubio, Carlos, et al.
Publicado: (2021) -
A Jackknife and Voting Classifier Approach to Feature Selection and Classification
por: Taylor, Sandra L., et al.
Publicado: (2011)