Cargando…
Differentiation and Maturation of Oligodendrocytes in Human Three-Dimensional Neural Cultures
Investigating human oligodendrogenesis and the interaction of oligodendrocytes with neurons and astrocytes would accelerate our understanding of the mechanisms underlying white matter disorders. However, this is challenging due to limited accessibility of functional human brain tissue. Here, we deve...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6788758/ https://www.ncbi.nlm.nih.gov/pubmed/30692691 http://dx.doi.org/10.1038/s41593-018-0316-9 |
_version_ | 1783458526858838016 |
---|---|
author | Marton, Rebecca M. Miura, Yuki Sloan, Steven A. Li, Qingyun Revah, Omer Levy, Rebecca J. Huguenard, John R. Pașca, Sergiu P. |
author_facet | Marton, Rebecca M. Miura, Yuki Sloan, Steven A. Li, Qingyun Revah, Omer Levy, Rebecca J. Huguenard, John R. Pașca, Sergiu P. |
author_sort | Marton, Rebecca M. |
collection | PubMed |
description | Investigating human oligodendrogenesis and the interaction of oligodendrocytes with neurons and astrocytes would accelerate our understanding of the mechanisms underlying white matter disorders. However, this is challenging due to limited accessibility of functional human brain tissue. Here, we developed a novel differentiation method of human induced pluripotent stem cells (hiPS cells) to generate three-dimensional (3D) neural spheroids that contain oligodendrocytes as well as neurons and astrocytes, called human oligodendrocyte spheroids (hOLS). We demonstrate that oligodendrocyte-lineage cells derived in hOLS transition through developmental stages similar to primary human oligodendrocytes and that the migration of oligodendrocyte-lineage cells and their susceptibility to lysolecithin exposure can be captured by live imaging. Moreover, their morphology changes as they mature over time in vitro and start myelinating neurons. We anticipate that this method can be used to study oligodendrocyte development, myelination, and interactions with other major cell types in the central nervous system. |
format | Online Article Text |
id | pubmed-6788758 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-67887582019-10-11 Differentiation and Maturation of Oligodendrocytes in Human Three-Dimensional Neural Cultures Marton, Rebecca M. Miura, Yuki Sloan, Steven A. Li, Qingyun Revah, Omer Levy, Rebecca J. Huguenard, John R. Pașca, Sergiu P. Nat Neurosci Article Investigating human oligodendrogenesis and the interaction of oligodendrocytes with neurons and astrocytes would accelerate our understanding of the mechanisms underlying white matter disorders. However, this is challenging due to limited accessibility of functional human brain tissue. Here, we developed a novel differentiation method of human induced pluripotent stem cells (hiPS cells) to generate three-dimensional (3D) neural spheroids that contain oligodendrocytes as well as neurons and astrocytes, called human oligodendrocyte spheroids (hOLS). We demonstrate that oligodendrocyte-lineage cells derived in hOLS transition through developmental stages similar to primary human oligodendrocytes and that the migration of oligodendrocyte-lineage cells and their susceptibility to lysolecithin exposure can be captured by live imaging. Moreover, their morphology changes as they mature over time in vitro and start myelinating neurons. We anticipate that this method can be used to study oligodendrocyte development, myelination, and interactions with other major cell types in the central nervous system. 2019-01-28 2019-03 /pmc/articles/PMC6788758/ /pubmed/30692691 http://dx.doi.org/10.1038/s41593-018-0316-9 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Marton, Rebecca M. Miura, Yuki Sloan, Steven A. Li, Qingyun Revah, Omer Levy, Rebecca J. Huguenard, John R. Pașca, Sergiu P. Differentiation and Maturation of Oligodendrocytes in Human Three-Dimensional Neural Cultures |
title | Differentiation and Maturation of Oligodendrocytes in Human Three-Dimensional Neural Cultures |
title_full | Differentiation and Maturation of Oligodendrocytes in Human Three-Dimensional Neural Cultures |
title_fullStr | Differentiation and Maturation of Oligodendrocytes in Human Three-Dimensional Neural Cultures |
title_full_unstemmed | Differentiation and Maturation of Oligodendrocytes in Human Three-Dimensional Neural Cultures |
title_short | Differentiation and Maturation of Oligodendrocytes in Human Three-Dimensional Neural Cultures |
title_sort | differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6788758/ https://www.ncbi.nlm.nih.gov/pubmed/30692691 http://dx.doi.org/10.1038/s41593-018-0316-9 |
work_keys_str_mv | AT martonrebeccam differentiationandmaturationofoligodendrocytesinhumanthreedimensionalneuralcultures AT miurayuki differentiationandmaturationofoligodendrocytesinhumanthreedimensionalneuralcultures AT sloanstevena differentiationandmaturationofoligodendrocytesinhumanthreedimensionalneuralcultures AT liqingyun differentiationandmaturationofoligodendrocytesinhumanthreedimensionalneuralcultures AT revahomer differentiationandmaturationofoligodendrocytesinhumanthreedimensionalneuralcultures AT levyrebeccaj differentiationandmaturationofoligodendrocytesinhumanthreedimensionalneuralcultures AT huguenardjohnr differentiationandmaturationofoligodendrocytesinhumanthreedimensionalneuralcultures AT pascasergiup differentiationandmaturationofoligodendrocytesinhumanthreedimensionalneuralcultures |