Cargando…
Detecting the impact of subject characteristics on machine learning-based diagnostic applications
Collection of high-dimensional, longitudinal digital health data has the potential to support a wide-variety of research and clinical applications including diagnostics and longitudinal health tracking. Algorithms that process these data and inform digital diagnostics are typically developed using t...
Autores principales: | Chaibub Neto, Elias, Pratap, Abhishek, Perumal, Thanneer M., Tummalacherla, Meghasyam, Snyder, Phil, Bot, Brian M., Trister, Andrew D., Friend, Stephen H., Mangravite, Lara, Omberg, Larsson |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789029/ https://www.ncbi.nlm.nih.gov/pubmed/31633058 http://dx.doi.org/10.1038/s41746-019-0178-x |
Ejemplares similares
-
Disentangling personalized treatment effects from “time-of-the-day” confounding in mobile health studies
por: Chaibub Neto, Elias, et al.
Publicado: (2022) -
Evaluating the Utility of Smartphone-Based Sensor Assessments in Persons With Multiple Sclerosis in the Real-World Using an App (elevateMS): Observational, Prospective Pilot Digital Health Study
por: Pratap, Abhishek, et al.
Publicado: (2020) -
Data Science Approaches for Effective Use of Mobile Device–Based Collection of Real‐World Data
por: Omberg, Larsson, et al.
Publicado: (2020) -
Indicators of retention in remote digital health studies: a cross-study evaluation of 100,000 participants
por: Pratap, Abhishek, et al.
Publicado: (2020) -
Smartphone-Based VO2max Measurement With Heart Snapshot in Clinical and Real-world Settings With a Diverse Population: Validation Study
por: Webster, Dan E, et al.
Publicado: (2021)