Cargando…
Species abundance information improves sequence taxonomy classification accuracy
Popular naive Bayes taxonomic classifiers for amplicon sequences assume that all species in the reference database are equally likely to be observed. We demonstrate that classification accuracy degrades linearly with the degree to which that assumption is violated, and in practice it is always viola...
Autores principales: | Kaehler, Benjamin D., Bokulich, Nicholas A., McDonald, Daniel, Knight, Rob, Caporaso, J. Gregory, Huttley, Gavin A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789115/ https://www.ncbi.nlm.nih.gov/pubmed/31604942 http://dx.doi.org/10.1038/s41467-019-12669-6 |
Ejemplares similares
-
Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin
por: Bokulich, Nicholas A., et al.
Publicado: (2018) -
q2-sample-classifier: machine-learning tools for microbiome classification and regression
por: Bokulich, Nicholas A, et al.
Publicado: (2018) -
redbiom: a Rapid Sample Discovery and Feature Characterization System
por: McDonald, Daniel, et al.
Publicado: (2019) -
RESCRIPt: Reproducible sequence taxonomy reference database management
por: Robeson, Michael S., et al.
Publicado: (2021) -
Beating Naive Bayes at Taxonomic Classification of 16S rRNA Gene Sequences
por: Ziemski, Michal, et al.
Publicado: (2021)